精英家教网 > 高中数学 > 题目详情
11.若数列{an}满足a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,则a1=3.

分析 a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,可得$-\frac{1}{2}$=$\frac{1}{1-{a}_{7}}$,解得a7=3,同理可得:a6,a5.可得an+3=an.即可得出.

解答 解:a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,∴$-\frac{1}{2}$=$\frac{1}{1-{a}_{7}}$,解得a7=3,同理可得:a6=$\frac{2}{3}$,a5=-$\frac{1}{2}$.
∴an+3=an
∴a1=a7=3.
故答案为:3.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,a,b,c分别为内角A,B,C所对的边长,且2asinB=$\sqrt{3}$b.
(1)求A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设x,y,z∈R,且x+2y+3z=1.
(1)当z=1,|x+y|+|y+1|>2时,求x的取值范围.
(2)当z=-1,x>0,y>0时,求$u=\frac{x^2}{x+1}+\frac{{2{y^2}}}{y+2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=log2(4x+1)+kx,(k∈R)是偶函数.
(Ⅰ)求k的值;
(Ⅱ)设函数g(x)=log2(a•2x-$\frac{4}{3}$a),其中a>0,若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°、距灯塔68海里的M处,下午2时到达这座灯塔南偏东45°的N处,则该船航行的速度为(单位:海里/小时)(  )
A.$\frac{17\sqrt{2}}{2}$B.34$\sqrt{6}$C.$\frac{17\sqrt{6}}{2}$D.34$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.
(1)求a的值;
(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券,已经采用分层抽样的方式从参与调查的1000位上网购者中抽取了10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)计算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如表是某初中1000名学生的肥胖情况,其中表格中有三个数据被墨水浸泡,数据看不清楚,已知从这批学生中随机抽取1名学生,抽到偏瘦男生的比例为$\frac{3}{20}$,若用分层抽样的方法,从这批学生中随机抽取50名,偏胖学生中应该抽取20人
 偏瘦正常 肥胖 
 女生(人) 100173 
 男生(人)177

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{5}}{2}$,则C的渐近线方程为(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=x

查看答案和解析>>

同步练习册答案