精英家教网 > 高中数学 > 题目详情
2.设x,y,z∈R,且x+2y+3z=1.
(1)当z=1,|x+y|+|y+1|>2时,求x的取值范围.
(2)当z=-1,x>0,y>0时,求$u=\frac{x^2}{x+1}+\frac{{2{y^2}}}{y+2}$的最小值.

分析 (1)利用条件化二元为一元,再解不等式,即可求x的取值范围;
(2)利用柯西不等式,即可求得u的最小值.

解答 解:(1)当z=1时,∵x+2y+3z=1,∴x+2y=-2,即y=$\frac{-2-x}{2}$
∴|x+y|+|y+1|>2可化简|x-2|+|x|>4,
∴x<0时,-x+2-x>4,∴x<-1;
0≤x≤2时,-x+2+x>4不成立;
x>2时,x-2+x>4,∴x>3;
综上知,x<-1或x>3;
(2)∵x+2y+3z=1.z=-1,x>0,y>0,
($\frac{{x}^{2}}{1+x}$$+\frac{2{y}^{2}}{y+2}$)[(x+1)+2(y+2)]≥(x+2y)2
∴($\frac{{x}^{2}}{1+x}$$+\frac{2{y}^{2}}{y+2}$)(x+2y+5)≥(x+2y)2=16
∴$\frac{{x}^{2}}{1+x}$$+\frac{2{y}^{2}}{y+2}$≥$\frac{16}{9}$
∴$u=\frac{x^2}{x+1}+\frac{{2{y^2}}}{y+2}$$≥\frac{16}{9}$,
当且仅当$\frac{x}{1+x}$=$\frac{y}{y+2}$,又x+2y=4,
即x=$\frac{4}{5}$,y=$\frac{8}{5}$时,umin=$\frac{16}{9}$.

点评 本题考查解不等式,考查函数的最值,正确运用柯西不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等差数列{an},a4+a10=10,则a7=(  )
A.5B.8C.10D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}满足Sn=-$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC的内角A,B,C所对的边长分别为a,b,c,cos A=$\frac{12}{13}$,且c-b=1,bc=156,则a的值为(  )
A.3B.5C.2$\sqrt{6}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y={x^2}+\frac{1}{x^2}$的图象关于(  )对称.
A.原点B.直线y=-xC.y轴D.直线y=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.四个人站成一排,解散后重新站成一排,恰有一个人位置不变的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{9}{24}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ax2+(a-2)x-2(a∈R).
(1)解关于x的不等式f(x)≥0;
(2)若a>0,当-1≤x≤1时,f(x)≤0恒成立,求实数a的取值范围;
(3)若当-1<a<1时,f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若数列{an}满足a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,则a1=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.
(Ⅰ)证明:ME∥平面FAD;
(Ⅱ)当平面AME⊥平面AEF时.求二面角B-AE-M的余弦值.

查看答案和解析>>

同步练习册答案