精英家教网 > 高中数学 > 题目详情
8.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AD=3,CD=2,则$\frac{AC}{BC}$的值为多少?

分析 利用相似三角形求出CD,使用勾股定理计算AC,BC即可得出比值.

解答 解:∵△ACD∽△CBD,∴$\frac{AD}{CD}=\frac{CD}{BD}$,即$\frac{3}{2}=\frac{2}{BD}$,∴BD=$\frac{4}{3}$.
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{13}$,BC=$\sqrt{B{D}^{2}+C{D}^{2}}$=$\frac{2\sqrt{13}}{3}$.
∴$\frac{AC}{BC}$=$\frac{3}{2}$.

点评 本题考查了相似三角形的性质,勾股定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知集合A={1,2},B={2,3,4},则集合A∪B中元素的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.有三张卡片的正、反两面分别写有数字0和1,2和3,4和5,某同学用它们来拼一个三位偶数,不同的个数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列不等式一定成立的是(  )
A.x2+1≥2|x|(x∈R)B.lg(x2+$\frac{1}{4}$)>lgx(x>0)
C.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{x}^{2}+1}$<1(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若三角形三个顶点为A(5,0)、B(-1,0)、C(-3,3),其外接圆为⊙M,求⊙M的方程,若点P(m,3)在⊙M上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x=$\frac{a+2b}{3}$,y=$\frac{2a+b}{3}$.命题p:a≠b;命题q:ab<xy,则命题p是命题q成立的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设Sn为等差数列{an}的前n项和,若a3+a4+a5+a6=36,则S8=72.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知log189=a,18b=5,用a、b表示log645.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y2=2nx(n<0)与双曲线$\frac{x^2}{4}$-$\frac{y^2}{m^2}$=1有一个相同的焦点,则动点(m,n)的轨迹是(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.直线的一部分

查看答案和解析>>

同步练习册答案