精英家教网 > 高中数学 > 题目详情
6.已知双曲线的一个焦点为(4,0),离心率为e=2.
(1)求双曲线的标准方程;
(2)写出该双曲线的渐进线方程,并求它的焦点(4,0)到另一条渐进线的距离.

分析 (1)由题意可知:双曲线的焦点在x轴,设双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,由题意可知:c=4,e=$\frac{c}{a}$=2,即可求得a,根据双曲线的性质即可求得b,求得双曲线方程;
(2)由双曲线的方程求得渐近线方程及另一个焦点,根据点到直线的距离公式即可求得焦点(4,0)到另一条渐进线的距离.

解答 解:(1)由双曲线的一个焦点为(4,0),即焦点在x轴上,
设双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
由题意有:$c=4,e=\frac{c}{a}=2$,
∴$a=\frac{c}{2}=2,{b^2}={a^2}-{c^2}=16-4=12$,
∴双曲线的标准方程为:$\frac{x^2}{4}-\frac{y^2}{12}=1$;
(2)由(1)可知:该双曲线的渐近线方程为:$y=±\sqrt{3}x$,
焦点(4,0)到渐近线$\sqrt{3}x-y=0$距离为:$d=\frac{{4\sqrt{3}}}{2}=2\sqrt{3}$,
∴焦点(4,0)到另一条渐进线的距离2$\sqrt{3}$.

点评 本题考查双曲线的标准方程及简单几何性质,考查双曲线的渐近线方程和点到直线的距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示,墙上挂有边长为a的正方形木板,它的四个角的阴影部分都是以正方形的顶点为圆心,半径为$\frac{a}{2}$的圆弧.某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都相等,此人投镖4000次,镖击中空白部分的次数是854次.据此估算:圆周率π约为3.146.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,极点为O,点A的极坐标为(2,$\frac{π}{6}$),以OA为斜边作等腰直角三角形OAB(其中O,A,B按逆时针方向分布)
(1)求点B的极坐标;
(2)求三角形外接圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.集合A={x|3≤x≤7},B={x|2<x<10},C={x|a<x<a+2}
(1)求A∪B,A∩B;
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆(x-2)2+y2=2上的点与点A(-1,3)的距离的最大值为(  )
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$6\sqrt{2}$D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设P是圆O:x2+y2=16上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=$\frac{3}{4}$|PD|.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(2,0)且斜率为$\frac{3}{4}$的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.取一根长5米的细绳,拉直后从其中任一点剪断,剪得的两段细绳长度都不小于1.5米的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}$(a>0且a≠1)是R上的增函数,则a的取值范围是(  )
A.(0,1)B.(1,3)C.(2,3)D.$[\frac{3}{2},3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各个命题:①0.8-0.1<0.8-0.2,②log23.4<log2π,③log76>log86,④1.71.01<1.61.01,其中正确的命题是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

同步练习册答案