精英家教网 > 高中数学 > 题目详情
15.函数f(x)=$\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}$(a>0且a≠1)是R上的增函数,则a的取值范围是(  )
A.(0,1)B.(1,3)C.(2,3)D.$[\frac{3}{2},3)$

分析 根据函数的单调性结合一次函数以及对数函数的性质得到关于a的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{3-a>0}\\{3-a-a≤0}\\{a>1}\end{array}\right.$,
解得:$\frac{3}{2}$≤a<3,
故选:D.

点评 本题考查了求函数的定义域问题,考查一次函数以及对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式x2-ax-2>0的解集为{x|x<-1或x>b}(b>-1).
(1)求a,b的值;
(2)当m>-$\frac{1}{2}$时,解关于x的不等式(mx+a)(x-b)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线的一个焦点为(4,0),离心率为e=2.
(1)求双曲线的标准方程;
(2)写出该双曲线的渐进线方程,并求它的焦点(4,0)到另一条渐进线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an}的公差d=-2,a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99的值是-82.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不等式(x-a)?(x+a)=(1-x+a)(1+x+a)=(1+a)2-x2<1对任意实数x成立,则(  )
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=loga(2+x),g(x)=loga(2-x),a>0且a≠1,设函数h(x)=f(x)+g(x).
(1)当a=2时,求h(x)的定义域和值域;
(2)当f(x)>g(x)时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足条件b2+c2-a2=bc=1,cosBcosC=-$\frac{1}{8}$,则△ABC的周长为$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(X)在R上的图象是连续的,若a<b<c,且f(a)•f(b)<0,f(b)•f(c)<0,则函数f(x)在(a,c)内的零点个数是(  )
A.2个B.不小于2的奇数个C.不小于2的偶数个D.至少2个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z满足(3+4i)z=5-10i,则$\overline{z}$=(  )
A.-1-2iB.-1+2iC.$\frac{11}{5}$+2iD.$\frac{11}{5}$-2i

查看答案和解析>>

同步练习册答案