精英家教网 > 高中数学 > 题目详情
4.已知函数f(X)在R上的图象是连续的,若a<b<c,且f(a)•f(b)<0,f(b)•f(c)<0,则函数f(x)在(a,c)内的零点个数是(  )
A.2个B.不小于2的奇数个C.不小于2的偶数个D.至少2个

分析 由根的存在性定理:f(a)f(b)<0,则y=f(x)在区间(a,b)上至少有一个零点,同理在(b,c)上至少有一个零点,结果可得

解答 解:由根的存在性定理,f(a)f(b)<0,f(c)f(b)<0,
则y=f(x)在区间(a,b)上至少有一个零点,
在(b,c)上至少有一个零点,而f(b)≠0,
所以y=f(x)在区间(a,c)上的零点个数为至少2个.
∵函数y=f(x)是连续不断的,不是单调的函数,在(a,b)可以有1个或3个或5个交点等,奇数个交点,同理在(b,c)上也有奇数个交点,
∴函数y=f(x)在区间(a,c)上的零点个数可以为:奇数+奇数=偶数个零点,
故函数y=f(x)在区间(a,c)上的零点个数为正偶数个,
故选:C

点评 本题考查根的存在性定理,正确理解根的存在性定理的条件和结论是解决本题的关键,解题的过程中要注意f(x)不是单调函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.集合A={x|3≤x≤7},B={x|2<x<10},C={x|a<x<a+2}
(1)求A∪B,A∩B;
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}$(a>0且a≠1)是R上的增函数,则a的取值范围是(  )
A.(0,1)B.(1,3)C.(2,3)D.$[\frac{3}{2},3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[0,4]上任取一实数a,使方程x2+2x+a=0有实数根的概率是(  )
A.0.25B.0.5C.0.6D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,满足Sn=-n2+7n(n∈N*).则数列{an}的通项公式是an=-2n+8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2sin($\frac{π}{6}$-2x),x∈[0,π]的增区间是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{6}$]C.[$\frac{5π}{6}$,π]D.[0,$\frac{π}{3}$]和[$\frac{5π}{6}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各个命题:①0.8-0.1<0.8-0.2,②log23.4<log2π,③log76>log86,④1.71.01<1.61.01,其中正确的命题是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线2x-3y-4=0的截距式方程为(  )
A.$\frac{x}{2}$-$\frac{3y}{4}$=1B.$\frac{x}{2}$+$\frac{3y}{-4}$=1C.$\frac{x}{2}$-$\frac{y}{{\frac{4}{3}}}$=1D.$\frac{x}{2}$+$\frac{y}{{-\frac{4}{3}}}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图1所示,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是 图2中的①④.

查看答案和解析>>

同步练习册答案