10£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬PΪCÉÏÒìÓÚÔ­µãµÄÈÎÒâÒ»µã£¬¹ýµãPµÄÖ±Ïßl½»CÓÚÁíÒ»µãQ£¬½»xÖáµÄÕý°ëÖáÓÚµãS£¬ÇÒÓÐ|FP|=|FS|£®µ±µãPµÄºá×ø±êΪ3ʱ£¬|PF|=|PS|£®
£¨¢ñ£©ÇóCµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl1¡Îl£¬ÇÒl1ºÍCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãE£®
£¨¢¡£©Ö¤Ã÷Ö±ÏßPE¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨¢¢£©¡÷PQEµÄÃæ»ýÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬ÇëÇó³ö×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÅ×ÎïÏߵĽ¹°ë¾¶¹«Ê½£¬½áºÏµÈ±ßÈý½ÇÐεÄÐÔÖÊ£¬Çó³öµÄpÖµ£»
£¨¢ò£©£¨¢¡£©Éè³öµãPµÄ×ø±ê£¬Çó³öÖ±ÏßPQµÄ·½³Ì£¬ÀûÓÃÖ±Ïßl1¡Îl£¬ÇÒl1ºÍCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãE£¬Çó³öµãEµÄ×ø±ê£¬Ð´³öÖ±ÏßPEµÄ·½³Ì£¬½«·½³Ì»¯Îªµãбʽ£¬¿ÉÇó³ö¶¨µã£»
£¨¢¢£© ÀûÓÃÏÒ³¤¹«Ê½Çó³öÏÒPQµÄ³¤¶È£¬ÔÙÇóµãEµ½Ö±ÏßPQµÄ¾àÀ룬µÃµ½¹ØÓÚÃæ»ýµÄº¯Êý¹ØÏµÊ½£¬ÔÙÀûÓûù±¾²»µÈʽÇó×îСֵ£®

½â´ð ½â£º£¨I£©ÈçͼËùʾ£¬ÓÉÌâÒâ¿ÉµÃ£ºxP=3ʱ£¬¡÷PFSÊǵȱßÈý½ÇÐΣ¬|PF|=3+$\frac{p}{2}$£¬
¡à3-$\frac{p}{2}$=$\frac{1}{2}$$£¨3+\frac{p}{2}£©$£¬½âµÃp=2£®¡àÅ×ÎïÏßCµÄ·½³ÌΪ£ºy2=4x£®
£¨II£©£¨i£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬${y}_{1}^{2}=4{x}_{1}$£¬
¡ß|FP|=|FS|=x1+1£¬
¡àS£¨x1+2£¬0£©£¬
¡àkPQ=-$\frac{{y}_{1}}{2}$£®
ÓÉÖ±Ïßl1¡Îl¿ÉÉèÖ±Ïßl1·½³ÌΪy=-$\frac{{y}_{1}}{2}$x+m£¬
ÁªÁ¢·½³Ì$\left\{\begin{array}{l}{y=-\frac{{y}_{1}}{2}x+m}\\{{y}^{2}=4x}\end{array}\right.$£¬ÏûÈ¥xµÃ${y}_{1}{y}^{2}$+8y-8m=0  ¢Ù
ÓÉl1ºÍCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãµÃ¡÷=64+32y1m=0£¬¡ày1m=-2£¬
Õâʱ·½³Ì¢ÙµÄ½âΪy=-$\frac{4}{{y}_{1}}$£¬´úÈëy=-$\frac{{y}_{1}}{2}$x+m£¬
µÃx=m2£¬¡àE£¨m2£¬2m£©£®
µãPµÄ×ø±ê¿É»¯Îª$£¨\frac{1}{{m}^{2}}£¬-\frac{2}{m}£©$£¬Ö±ÏßPE·½³ÌΪy-2m=$\frac{-\frac{2}{m}-2m}{\frac{1}{{m}^{2}}-{m}^{2}}$£¨x-m2£©£¬
¼´y-2m=$\frac{2m}{{m}^{2}-1}$£¨x-m2£©£¬
Áîy=0£¬¿ÉµÃx=1£¬
¡àÖ±ÏßAE¹ý¶¨µã£¨1£¬0£©£®
£¨¢¢£©ÉèQ£¨x2£¬y2£©£®
Ö±ÏßPQµÄ·½³ÌΪ$y-{y}_{1}=-\frac{{y}_{1}}{2}$$£¨x-\frac{{y}_{1}^{2}}{4}£©$£¬¼´x=-$\frac{2}{{y}_{1}}y$+$\frac{{y}_{1}^{2}}{4}$+2£®
ÁªÁ¢·½³Ì$\left\{\begin{array}{l}{x=-\frac{2}{{y}_{1}}y+\frac{{y}_{1}^{2}}{4}+2}\\{{y}^{2}=4x}\end{array}\right.$£¬ÏûÈ¥xµÃy2+$\frac{8}{{y}_{1}}$y-$£¨{y}_{1}^{2}+8£©$=0£¬
¡ày1+y2=-$\frac{8}{{y}_{1}}$£¬y1y2=-$£¨{y}_{1}^{2}+8£©$£¬
¡à|PQ|=$\sqrt{1+\frac{4}{{y}_{1}^{2}}}$|y1-y2|=$\sqrt{1+\frac{4}{{y}_{1}^{2}}}$$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+\frac{4}{{y}_{1}^{2}}}$$|2{y}_{1}+\frac{8}{{y}_{1}}|$£®
¡àE$£¨\frac{4}{{y}_{1}^{2}}£¬-\frac{4}{{y}_{1}}£©$£¬
µãEµ½Ö±ÏßPQµÄ¾àÀëΪ£ºd=$\frac{|\frac{4}{{y}_{1}^{2}}-\frac{8}{{y}_{1}^{2}}-\frac{{y}_{1}^{2}}{4}-2|}{\sqrt{1+\frac{4}{{y}_{1}^{2}}}}$=$\frac{|\frac{4}{{y}_{1}^{2}}+\frac{{y}_{1}^{2}}{4}+2|}{\sqrt{1+\frac{4}{{y}_{1}^{2}}}}$£¬
¡à¡÷ABEµÄÃæ»ýS=$\frac{1}{2}$d|PQ|=$|{y}_{1}+\frac{4}{{y}_{1}}|•$$|\frac{4}{{y}_{1}^{2}}+\frac{{y}_{1}^{2}}{4}+2|$¡Ý$2\sqrt{{y}_{1}•\frac{4}{{y}_{1}}}$$•£¨2\sqrt{\frac{2}{{y}_{1}}•\frac{{y}_{1}}{2}}£©^{2}$=16£¬
µ±ÇÒ½öµ±y1=¡À2ʱµÈºÅ³ÉÁ¢£¬
¡à¡÷ABEµÄÃæ»ý×îСֵΪ16£®

µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏߵ͍Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÏÒ³¤ÎÊÌâ¡¢Ö±ÏßÓëÅ×ÎïÏßÏàÇÐÇÐÏßÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®£¨1£©ÒÑÖªsin4¦È+cos4¦È=$\frac{5}{9}$£¬Çósin2¦ÈµÄÖµ£»
£¨2£©»¯¼ò£ºsin40¡ã£¨tan10¡ã-$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ2£¬¹ýÓÒ½¹µãF×÷Ö±Ïß½»¸ÃË«ÇúÏßÓÚA¡¢BÁ½µã£¬PΪxÖáÉÏÒ»µã£¬ÇÒ|PA|=|PB|£¬Èô|AB|=8£¬Ôò|FP|=£¨¡¡¡¡£©
A£®2B£®4C£®8D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®°´ÕÕ¹ú¼Ò¹æ¶¨£¬Ä³ÖÖ´óÃ×ÖÊÁ¿£¨µ¥Î»£ºkg£©±ØÐë·þ´ÓÕý̬·Ö²¼¦Î¡«N£¨10£¬¦Ò2£©£¬¸ù¾Ý¼ì²â½á¹û¿ÉÖªP£¨9.9¡Ü¦Î¡Ü10.1£©=0.96£¬Ä³¹«Ë¾ÎªÃ¿Î»Ö°¹¤¹ºÂòÒ»´üÕâÖÖ°ü×°µÄ´óÃ××÷Ϊ¸£Àû£¬Èô¸Ã¹«Ë¾ÓÐ2000ÃûÖ°¹¤£¬Ôò·Ö·¢µ½µÄ´óÃ×ÖÊÁ¿ÔÚ9.9kgÒÔϵÄÖ°¹¤Êý´óԼΪ40£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªËæ»ú±äÁ¿¦Î¡«B£¨5£¬$\frac{1}{3}$£©£¬ÔòP£¨¦Î=3£©=£¨¡¡¡¡£©
A£®$\frac{5}{27}$B£®$\frac{7}{81}$C£®$\frac{40}{243}$D£®$\frac{19}{144}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ä³ÖÐѧ²ÉÓÃϵͳ³éÑù·½·¨£¬´Ó¸ÃУ¸ßÒ»Äê¼¶È«Ìå800ÃûѧÉúÖгé80ÃûѧÉú×öÑÀ³Ý½¡¿µ¼ì²é£®ÏÖ½«800ÃûѧÉú´Ó1µ½800½øÐбàºÅ£®ÒÑÖª´Ó31¡«40Õâ10¸öÊýÖÐÈ¡µÄÊýÊÇ39£¬ÔòÔÚµÚ1С×é1¡«10ÖÐËæ»ú³éµ½µÄÊýÊÇ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐ˵·¨²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¡°Èôxy=0£¬Ôòx=0»òy=0¡±µÄ·ñÃüÌâÊÇÕæÃüÌâ
B£®ÃüÌâ¡°?x¡ÊR£¬x2-x-1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2-x-1¡Ý0¡±
C£®?x¡ÊR£¬Ê¹µÃex£¼x-1
D£®¡°a£¼0¡±ÊÇ¡°x2+ay2=1±íʾ˫ÇúÏß¡±µÄ³äÒªÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô$¦È¡Ê£¨0£¬\frac{¦Ð}{4}£©$£¬»¯¼ò$\sqrt{1-2sin£¨3¦Ð-¦È£©sin£¨\frac{¦Ð}{2}+¦È£©}$=£¨¡¡¡¡£©
A£®sin¦È-cos¦ÈB£®sin¦È+cos¦ÈC£®cos¦È+sin¦ÈD£®cos¦È-sin¦È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÖÐÐÄÔÚÔ­µãµÄÍÖÔ²EµÄ×ó½¹µãF£¨-$\sqrt{3}$£¬0£©£¬ÓÒ¶¥µãA£¨2£¬0£©£¬Å×ÎïÏßC½¹µãΪA£®
£¨1£©ÇóÍÖÔ²EÓëÅ×ÎïÏßCµÄ±ê×¼·½³Ì£»
£¨2£©Èô¹ý£¨0£¬1£©µÄÖ±Ïß l ÓëÅ×ÎïÏßCÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¬ÇóÖ±Ïß lµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸