分析 先求出命题P,Q为真时,实数a的取值范围.再由“P或Q”是真命题,求可得答案.
解答 解:若命题P:函数y=logax在定义域上单调递减为真命题,
∴a∈(0,1);
若命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立为真命题;
∴a-2=0,或$\left\{\begin{array}{l}a-2<0\\ 4(a-2)^{2}+16(a-2)<0\end{array}\right.$,
解得:a∈(-2,2];
若“P或Q”是真命题,则a∈(0,1)∪(-2,2]=(-2,2]
点评 本题以命题的真假判断与应用为载体,考查了复合命题,不等式恒成立问题,对数函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\sqrt{5},2\sqrt{5}}]$ | B. | $[{\sqrt{10},2\sqrt{5}}]$ | C. | $[{\sqrt{10},4\sqrt{5}}]$ | D. | $[{2\sqrt{5},4\sqrt{5}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [-2,0]和[2,+∞) | C. | [1,2]与[3,+∞) | D. | [0,2]∪(-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com