精英家教网 > 高中数学 > 题目详情
2.以N(1,3)为圆心,并且与直线3x-4y-7=0相切的圆的标准方程为${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.

分析 要求圆的方程,已知圆心坐标,关键是要求半径,根据直线与圆相切得到圆心到直线的距离等于半径,所以利用点到直线的距离公式求出圆心到直线3x-4y-7=0的距离即为圆的半径,根据圆心坐标和求出的半径写出圆的方程即可.

解答 解:因为点N(1,3)到直线3x-4y-7=0的距离d=$\frac{|3-4×3-7|}{5}=\frac{16}{5}$,
由题意得圆的半径r=d=$\frac{16}{5}$,
则所求的圆的方程为${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.
故答案为${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.

点评 此题考查学生掌握直线与圆相切时所满足的条件是圆心到直线的距离等于半径,灵活运用点到直线的距离公式化简求值,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(1-x)-loga(1+x)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)求满足不等式f(x)<0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知U={y|y=lnx,x>1},A={y|y=$\frac{1}{x}$,x>3},则∁UA=(  )
A.$(0,\frac{1}{3})$B.(0,+∞)C.[$\frac{1}{3},+∞$)D.(-∞,0]∪[$\frac{1}{3},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合,A={小于9的正整数},B={x|3≤x≤6,且x∈Z}
求A∩B,A∪B,(∁ZA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四组函数,表示同一函数的是(  )
A.$f(x)=\sqrt{x^2}$与g(x)=xB.$f(x)={3^{{{log}_3}x}}$与g(x)=x
C.f(x)=2-x与$g(x)={({\frac{1}{2}})^x}$D.f(x)=|x-3|与g(x)=x-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:命题P:函数y=logax在定义域上单调递减;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;若“P或Q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:“?x0∈R,使得x${\;}_{0}^{2}$+2ax0+1<0成立”为真命题,则实数a满足(  )
A.[-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中,正确的是(  )
A.对正态分布密度函数$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-μ)}^2}}}{{2{σ^2}}}}},x∈R$的图象,σ越大,曲线越“高瘦”
B.若随机变量ξ的密度函数为$f(x)=\frac{1}{{2\sqrt{2π}}}{e^{-\frac{{{{(x-1)}^2}}}{8}}},x∈R$,则ξ的方差为2
C.若随机变量ξ~N(μ,σ2),则ξ落在区间(μ-3σ,μ+3σ)上的概率约为68.3%
D.若随机变量ξ~N(0,1),则P(ξ>1.2)=1-P(ξ≤1.2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{x^2}{x-1}$的单调递减区间是[0,1),(1,2].

查看答案和解析>>

同步练习册答案