精英家教网 > 高中数学 > 题目详情
12.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充分不必要(填“必要不充分”、“充分不必要”或“充要”)条件.

分析 根据$\frac{1}{x}<\frac{1}{2}$求出不等式的解为x>2或x<0,进而根据充要条件的定义可得答案.

解答 解:$\frac{1}{x}<\frac{1}{2}$等价于$\frac{1}{x}$-$\frac{1}{2}$<0,即$\frac{2-x}{2x}<$0,即x(x-2)>0,解得x>2或x<0,
故“x>2”⇒“$\frac{1}{x}<\frac{1}{2}$”,
但由“$\frac{1}{x}<\frac{1}{2}$”推不出“x>2”,
故x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充分不必要条件,
故答案为:充分不必要.

点评 本题考查的知识点是充要条件的判断,其中熟练掌握充要条件的定义是解答此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若$\frac{S_n}{T_n}=\frac{n+3}{2n+1}$,则$\frac{a_6}{b_6}$=$\frac{14}{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若命题p:0∈{-1,0,1},q:0∈$\{a-1,a+\frac{1}{a}\}$,又“p∧q”为真,则实数a值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下五个个命题,
①若实数a>b,则a+i>b+i.
②两个随机变量相关性越强,则相关系数的绝对值越接近于1.
③在回归直线方程$\hat y=0.2x+12$中,当解释变量x每增加一个单位时,预报变量$\hat y$一定增加0.2单位.
④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.
⑤由“若a,b,c∈R,则(ab)c=a(bc)”类比“若$\overrightarrow a,\overrightarrow b,\overrightarrow c$为三个向量,则$({\overrightarrow a•\overrightarrow b})\overrightarrow c=\overrightarrow a({\overrightarrow b•\overrightarrow c})$”;
正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在数列$\frac{{\sqrt{5}}}{3},\frac{{\sqrt{10}}}{8},\frac{{\sqrt{17}}}{a+b},\frac{{\sqrt{a-b}}}{24},\frac{{\sqrt{37}}}{35},…$中,则实数a=$\frac{41}{2}$,b=$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知m,n∈R+,且m>n
(1)若n>1,比较m2+n与mn+m的大小关系,并说明理由;
(2)若m+2n=1,求$\frac{2}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a∈R,解关于x的方程ax2-(a+2)x+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{2π}{3}$,且$|{\overrightarrow a}$|=2,$\overrightarrow a•\overrightarrow b=-1$,则$|{\overrightarrow b}$|=(  )
A.$\frac{{\sqrt{3}}}{3}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x>0,y>0,且$\frac{1}{x}$+$\frac{1}{y}$=1,若x+y>m恒成立,则实数m的取值范围是(-∞,4).

查看答案和解析>>

同步练习册答案