精英家教网 > 高中数学 > 题目详情

【题目】如图所示的空间几何体中,底面四边形为正方形, ,平面平面 .

(1)求二面角的大小;

(2)若在平面上存在点,使得平面,试通过计算说明点的位置.

【答案】(1)(2)是线段上靠近的三点分点.

【解析】试题分析:(1)先根据题意建立空间直角坐标系,设立各点坐标,利用方程组求出两平面的法向量,根据向量数量积求出法向量夹角,最后根据二面角与向量夹角之间关系求二面角大小,(2)

试题解析:(1)因为,平面平面,所以平面,所以.

因为四边形为正方形,所以,所以两两垂直.

为原点, 分别为轴建立空间直角坐标系(如图).

由勾股定理可知

所以

所以.

设平面的一个法向量为

,得

同理可得平面的一个法向量

,因为二面角为钝角,

故二面角的大小为.

(2)设,因为

所以

解得

所以是线段上靠近的三点分点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,|φ|< )其中的图象如图所示,为了得到g(x)=cos(2x﹣ )的图象,只需将f(x)的图象(

A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设函数,若在区间上单调,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率.

(1)求椭圆的方程;

(2)点在椭圆上,若点与点关于原点对称,连接并延长与椭圆的另一个交点为,连接,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河南省2017届高中毕业年级考前预测数学(理)】已知圆与直线相切,设点为圆上一动点, 轴于,且动点满足,设动点的轨迹为曲线

(1)求曲线的方程;

(2)直线与直线垂直且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,a2=2,且an+1=2an+3an1(n≥2,n∈N+).
(1)设bn=an+1+an(n∈N+),求证{bn}是等比数列;
(2)(i)求数列{an}的通项公式;
(ii)求证:对于任意n∈N+都有 + +…+ + 成立.

查看答案和解析>>

同步练习册答案