精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,圆C的方程为x2+y2+8x+15=0,若直线y=kx上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是
 
考点:圆的一般方程
专题:直线与圆
分析:由题意可得,圆心C(-4,0)到直线y=kx的距离d小于或等于半径加1,即
|-4k-0|
k2+1
≤2,由此求得k的范围.
解答: 解:圆C的方程为x2+y2+8x+15=0,整理得:(x+4)2+y2=1,
表示圆C是以(-4,0)为圆心,1为半径.
又直线y=kx上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
则圆心C(-4,0)到直线y=kx的距离d小于或等于半径加1,
 即
|-4k-0|
k2+1
≤2,解得
3
3
≤k≤
3
3

故答案为:[-
4
3
3
3
].
点评:本题主要考查直线和圆的位置关系的应用,点到直线的距离公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a≠0,a、b为常数)满足f(1-x)=f(1+x),且方程f(x)=x有两相等实根.
(1)在区间x∈[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
(2)是否存在实数m和n(m<n ),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在求出m和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用五点法作出函数y=2sin(2x+
π
3
)的图象,并指出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠DAB=60°.侧面PAD为正三角形,其所在的平面垂直于底面ABCD,G为AD边的中点.
(1)求证:BG⊥平面PAD;
(2)求三棱锥G-CDP的体积;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+a•2-x(a∈R).
(1)讨论函数f(x)的奇偶性;
(2)若函数f(x)在(-∞,2]上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第四象限角,则
α
3
必定不在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间[a,b]上的函数y=f(x),f′(x)是函数f(x)的导数,如果?ξ∈[a,b],使得f(b)-f(a)=f′(ξ)(b-a),则称ξ为[a,b]上的“中值点”.下列函数:
①f(x)=2x+1,
②f(x)=x2-x+1,
③f(x)=ln(x+1),
④f(x)=(x-
1
2
3,x∈[-2,2]
其中在区间上的“中值点”多于一个的函数是
 
(请写出你认为正确的所有结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx,对于满足0<x1<x2<π的任意x1,x2,给出下列结论:
①(x2-x1)[f(x2)-f(x1)]>0
②x2f(x1)>x1f(x2
③f(x2)-f(x1)<x2-x1
f(x1)+f(x2)
2
<f(
x1+x2
2

其中正确结论的序号为
 
.(把所有正确结论的序号填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A、2013×1006
B、2013×1007
C、2015×1007
D、2015×1008

查看答案和解析>>

同步练习册答案