精英家教网 > 高中数学 > 题目详情
定义在区间[a,b]上的函数y=f(x),f′(x)是函数f(x)的导数,如果?ξ∈[a,b],使得f(b)-f(a)=f′(ξ)(b-a),则称ξ为[a,b]上的“中值点”.下列函数:
①f(x)=2x+1,
②f(x)=x2-x+1,
③f(x)=ln(x+1),
④f(x)=(x-
1
2
3,x∈[-2,2]
其中在区间上的“中值点”多于一个的函数是
 
(请写出你认为正确的所有结论的序号).
考点:导数的运算
专题:新定义,导数的概念及应用
分析:根据“中值点”的几何意义是在区间[a,b]上存在点,使得函数在该点的切线的斜率等于区间[a,b]的两个端点连线的斜率值.由此定义并结合函数的图象与性质,对于四个选项逐一判断,即得出正确答案.
解答: 解:根据题意,“中值点”的几何意义是在区间[a,b]上存在点,使得函数在该点的切线的斜率等于区间[a,b]的两个端点连线的斜率值.
对于①,根据题意,在区间[a,b]上的任一点都是“中值点”,f′(x)=2,满足f(b)-f(a)=f′(x)(b-a),∴①正确;
对于②,根据“中值点”函数的定义,抛物线在区间[a,b]只存在一个“中值点”,∴②不正确;
对于③,f(x)=ln(x+1)在区间[a,b]只存在一个“中值点”,∴③不正确;
对于④,∵f′(x)=3(x-
1
2
)
2
,且f(2)-f(-2)=19,2-(-2)=4;∴3(x-
1
2
)
2
×4=19,解得x=
1
2
±
19
12
∈[-2,2],∴存在两个“中值点”,④正确.
故答案为:①④
点评:本题考查了新定义的命题真假的判断问题,重点是对导数及其几何意义的理解与应用问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:方程x2+x+m=0有一个正根和一个负根;命题Q:方程4x2+4(m-2)x+1=0无实数根,若P或Q为真,P且Q为假,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了改善空气质量,某市规定,从2014年3月1日起,对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行碳排放检测,记录如下:(单位:g/km)
80 110 120 140 150
100 120 x 100 160
经测算得乙品牌汽车二氧化碳排放量的平均值为
.
x 
=120g/km.
(Ⅰ)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;
(Ⅱ)从被检测的5辆甲品牌汽车中随机抽取2辆,则至少有一辆二氧化碳排放量超过130g/km的概率是多少?
(注:方差s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2],其中
.
x
为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的方程为x2+y2+8x+15=0,若直线y=kx上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式(x2-x1)[f(x1)-f(x2)]<0恒成立,则不等式f(x-2)<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知G是△ABC的重心,直线EF过点G且与边AB、C分别交于点E、F,
AE
AB
AF
AC
,则
1
α
+
1
β
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在坐标原点,焦点在x轴上,长轴长为4,离心率为
1
2
的椭圆方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3x”的否定是“?x∈R,使2x≤3x”;
②若正数x,y满足x+3y=5xy,则3x+4y的最小值为
28
5

③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的说法是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)和偶函数g(x),当x<0时,f(x)=-
1
x
;当x≥0时,g(x)=2x,则f(x)和g(x)图象的公共点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步练习册答案