精英家教网 > 高中数学 > 题目详情

【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用

A.一次函数B.二次函数

C.指数型函数D.对数型函数

【答案】D

【解析】

分别分析一次函数、二次函数、指数型函数、对数型函数单调性以及其变化快慢结合题意即可得结果.

根据基本初等函数的图象与性质可知,一次函数增长的速度不变,不满足题意;要满足调整后初期利润增长迅速,如果是二次函数,则必须开口向上,而此时在二次函数对称轴的右侧增长的速度是越来越快,没有慢下来的可能,不符合要求;要满足调整后初期利润增长迅速,如果是指数函数,则底数必是大于1的数,而此时指数函数增长的速度也是越来越快的,也不满足要求;对于对数函数,当底数大于1时,对数函数增长的速度先快后慢,符合要求,故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1)若直线上有无数个点不在平面内,则

2)若直线与平面平行,则与平面内的任意一条直线都平行;

3)若直线与平面平行,则与平面内的任意一条直线都没有公共点;

4)如果两条平行直线中的一条与一个平面平行,则另一条直线也与这个平面平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,定义域为的函数是偶函数,其中为自然对数的底数.

(Ⅰ)求实数值;

(Ⅱ)判断该函数上的单调性并用定义证明;

(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是一幅统计图,根据此图得到的以下说法中正确的是(

A.这几年生活水平逐年得到提高

B.生活费收入指数增长最快的一年是2015

C.生活价格指数上涨速度最快的一年是2016

D.虽然2017年的生活费收入增长缓慢,但生活价格指数略有降低,因而生活水平有较大的改善

E.2016年生活价格指数上涨的速度与2017年生活价格指数下降的速度相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用表示出租所有自行车的日净收入(即一日中出租所以自行车的总收入减去管理费用后的所得).

1)求函数的解析式及定义域;

2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂推出品牌为玉兔的新产品,生产玉兔的固定成本为20000元,每生产一件玉兔需要增加投入100元,根据统计数据,总收益P(单位:元)与月产量x(单位:件)满足(注:总收益=总成本+利润)

1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;

2)当月产量为多少时,利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式对于任意成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中无理数.

(Ⅰ)若函数有两个极值点的取值范围

(Ⅱ)若函数的极值点有三个最小的记为最大的记为的最大值为的最小值.

查看答案和解析>>

同步练习册答案