分析 3sin2B+7sin2C=2sinAsinBsinC+2sin2A,由正弦定理可得:3b2+7c2=2bcsinA+2a2,由余弦定理可得:a2=b2+c2-2bccosA,化为:2(sinA-2cosA)=$\frac{{b}^{2}+5{c}^{2}}{bc}$=$\frac{b}{c}$+$\frac{5c}{b}$,再利用基本不等式的性质即可得出.
解答 解:∵3sin2B+7sin2C=2sinAsinBsinC+2sin2A,
由正弦定理可得:3b2+7c2=2bcsinA+2a2,
∴a2=$\frac{3{b}^{2}+7{c}^{2}-2bcsinA}{2}$,又a2=b2+c2-2bccosA,
∴$\frac{3{b}^{2}+7{c}^{2}-2bcsinA}{2}$=b2+c2-2bccosA,
化为:2(sinA-2cosA)=$\frac{{b}^{2}+5{c}^{2}}{bc}$=$\frac{b}{c}$+$\frac{5c}{b}$≥2$\sqrt{5}$,当且仅当b=$\sqrt{5}$c时取等号.
即2$\sqrt{5}$sin(A-θ)≥2$\sqrt{5}$,其中tanθ=2.
即sin(A-θ)≥1,又sin(A-θ)≤1,
∴sin(A-θ)=1.
∴A-θ=$\frac{π}{2}$+2kπ,即A=θ+$\frac{π}{2}$+2kπ,k∈N*.
∴tanA=tan(θ+$\frac{π}{2}$+2kπ)=tan(θ+$\frac{π}{2}$)=-$\frac{1}{tanθ}$=-$\frac{1}{2}$,
∴A∈(0,π),sinA=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
点评 本题考查了正弦定理余弦定理、基本不等式的性质、三角函数求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,使得|x|≤0成立 | B. | ¬p为真,则p∨q一定是假 | ||
| C. | x-y=0成立的充要条件是$\frac{x}{y}$=1 | D. | ?x∈R,都有ex>xe |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com