| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
分析 联立直线方程解得A,B的坐标,再由向量共线的坐标表示,解得双曲线的a,b,c和离心率公式计算即可得到所求值.
解答
解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
设F(c,0),由OA⊥FA,
且OA的方程为y=$\frac{b}{a}$x,OB的方程为y=-$\frac{b}{a}$x,
直线AB的方程为y=-$\frac{a}{b}$(x-c),
由$\left\{\begin{array}{l}{y=\frac{b}{a}x}\\{y=-\frac{a}{b}(x-c)}\end{array}\right.$解得A($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由$\left\{\begin{array}{l}{y=-\frac{b}{a}x}\\{y=-\frac{a}{b}(x-c)}\end{array}\right.$解得B($\frac{c{a}^{2}}{{a}^{2}-{b}^{2}}$,-$\frac{abc}{{a}^{2}-{b}^{2}}$)
由3$\overrightarrow{AF}$+$\overrightarrow{BF}$=0,即3$\overrightarrow{FA}$+$\overrightarrow{FB}$=$\overrightarrow{0}$,
即3($\frac{{a}^{2}}{c}$-c,$\frac{ab}{c}$)+($\frac{c{a}^{2}}{{a}^{2}-{b}^{2}}$-c,-$\frac{abc}{{a}^{2}-{b}^{2}}$)=0
可得3($\frac{{a}^{2}}{c}$-c)+$\frac{c{a}^{2}}{{a}^{2}-{b}^{2}}$-c=0,
即3a2+$\frac{{c}^{2}{a}^{2}}{{a}^{2}-{b}^{2}}$=4c2,
由b2=c2-a2,化简可得3a4-5a2c2+2c4=0,
即(a2-c2)(3a2-2c2)=0,
即a2=c2,(舍)或3a2=2c2,
即c2=$\frac{3}{2}$a2,c=$\sqrt{\frac{3}{2}}$a=$\frac{\sqrt{6}}{2}$a,可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故选:B.
点评 本题是对双曲线的渐近线以及离心率的综合考查,注意运用向量共线的坐标表示,考查运算能力,求出交点坐标,结合向量关系进行求解是解决本题的关键.考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}{a^2}$ | B. | $\frac{{\sqrt{3}}}{3}{a^2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{13}}}{3}$ | B. | $\frac{{\sqrt{21}}}{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{37}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com