精英家教网 > 高中数学 > 题目详情
5.已知球O的半径为1,A,B,C三点都在球面上,且∠AOB=∠AOC=∠BOC=90°,则球心O到平面ABC的距离为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{6}}{3}$

分析 判断三棱锥的形状,利用三棱锥的体积求解球心O到平面ABC的距离.

解答 解:由题意可知,棱锥O-ABC是正方体的一个角,正方体的棱长为:1,AB=BC=AC=$\sqrt{2}$,△ABC是正三角形,
S△ABC=$\frac{\sqrt{3}}{4}×(\sqrt{2})^{2}$=$\frac{\sqrt{3}}{2}$,V0-ABC=VC-AOB,球心O到平面ABC的距离为h,
可得:$\frac{1}{3}×\frac{\sqrt{3}}{2}×h$=$\frac{1}{3}×\frac{1}{2}×1×1×1$,
可得:h=$\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题考查点到平面的距离的求法,等体积法的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.三角形ABC中,3sin2B+7sin2C=2sinAsinBsinC+2sin2A,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=sinx+aln|1-$\frac{2}{x+1}$|+2,若f($\frac{π}{6}$)=4,则f(-$\frac{π}{6}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一个正三棱柱的主视图是如图所示的两个并列的正方形,则其侧面积等于(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=2,点E,F分别为AB和PD的中点.
(Ⅰ)求证:直线AF∥平面PEC;
(Ⅱ)求点F到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m=${∫}_{0}^{1}$exdx,n=${∫}_{1}^{e}$$\frac{1}{x}$dx,则m与n的大小关系为(  )
A.m<nB.m≤nC.m>nD.m≥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α是第四象限角,且f(α)=$\frac{sin(-α-π)cos(5π-α)tan(4π-α)}{cos(\frac{5π}{2}-α)tan(-α-π)}$
(1)化简f(α);
(2)若tan(α-π)=-3,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(4,5),且$\overrightarrow{a}$的起点A(2,3),$\overrightarrow{a}$的终点为B,则B点的坐标为(6,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,a1=-1,a2=2,满足Sn+1=3Sn-2Sn-1-an-1+2(n≥2)
(1)求证:数列{an-an-1}为等差数列;
(2)求证:$\frac{1}{{a}_{n}+1}$+$\frac{1}{{a}_{n-1}+1}$+…$\frac{1}{{a}_{2}+1}$<$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案