精英家教网 > 高中数学 > 题目详情
20.已知点A(1,2)、B(3,-4),则线段AB的垂直平分线的方程是(  )
A.3x+y=0B.x-3y=10C.3x+y=5D.x-3y=5

分析 利用斜率计算公式可得:kAB,线段AB的中点为(2,-1),即可得出线段AB的垂直平分线的方程.

解答 解:kAB=$\frac{-4-2}{3-1}$=-3,线段AB的中点为(2,-1),
∴线段AB的垂直平分线的方程是y+1=$\frac{1}{3}$(x-2),化为:x-3y-5=0,
故选:D.

点评 本题考查了线段垂直平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则an=(  )
A.2n-1B.($\frac{3}{2}$)n-1
C.($\frac{2}{3}$)n-1D.$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2}{•(\frac{3}{2})}^{n-2},n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知?x∈(0,+∞),[(m-1)x-1](2x-2)≥0恒成立,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.作出下列函数图象.
(1)y=x(-2≤x≤3,x∈Z,x≠0)
(2)y=-2x2+4x+1(0<x≤4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地交通管理部门从当地驾校学员中随机抽取9名学员参加交通法规知识抽测,活动设有A、B、C三个等级,分别对应5分,4分,3分,恰好各有3名学员进入三个级别,现从中随机抽取n名学员(假设各人被抽取的可能性是均等的,1≤n≤9),再将抽取的学员的成绩求和.
(I)当n=3时,记事件A={抽取的3人中恰有2人级别相同},求P(A);
(Ⅱ)当n=2时,若用ξ表示n个人的成绩和,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x的方程xln x=ax+1(a∈R),下列说法正确的是(  )
A.有两不等根B.只有一正根C.无实数根D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,三棱柱ABC-A1B1C1的侧棱垂直于底面,AB=BC=2AA1,∠ABC=90°,D是BC的中点,E是AC的中点
(1)求证:BE⊥A1C;
(2)求二面角C1-AD-C的余弦值; 
(3)试问线段A1B1上是否存在点F,使AF与DC1成60°角?若存在,确定F点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)对任意的x∈(0,π)满足f′(x)sinx>f(x)cosx(其中f′(x)是函数f(x)的导函数,则下列不等式错误的是(  )
A.$f(\frac{π}{6})<f(\frac{5}{6}π)$B.$\sqrt{3}f(\frac{π}{6})>f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{2})>2f(\frac{π}{3})$D.$2f(\frac{π}{6})<f(\frac{π}{2})$

查看答案和解析>>

同步练习册答案