精英家教网 > 高中数学 > 题目详情
10.已知函数y=f(x)对任意的x∈(0,π)满足f′(x)sinx>f(x)cosx(其中f′(x)是函数f(x)的导函数,则下列不等式错误的是(  )
A.$f(\frac{π}{6})<f(\frac{5}{6}π)$B.$\sqrt{3}f(\frac{π}{6})>f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{2})>2f(\frac{π}{3})$D.$2f(\frac{π}{6})<f(\frac{π}{2})$

分析 构造函数F(x)=$\frac{f(x)}{sinx}$,x∈(0,π),可得函数F(x)在x∈(0,π)上单调递增,检验即可.

解答 解:令F(x)=$\frac{f(x)}{sinx}$,x∈(0,π),
则F′(x)=$\frac{f′(x)sinx-f(x)cosx}{{sin}^{2}x}$,
∵f′(x)sinx-f(x)cosx>0,
∴F′(x)>0,
∴F($\frac{π}{6}$)<F($\frac{π}{3}$),F($\frac{π}{6}$)<F($\frac{5π}{6}$),
F($\frac{π}{2}$)>F($\frac{π}{3}$),F($\frac{π}{6}$)<F($\frac{π}{2}$),
故B选项错误,
故选:B.

点评 本题考查函数的单调性和导数的关系,利用单调性比较大小,熟记商的导数公式,以之构造出相应函数是解答的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知点A(1,2)、B(3,-4),则线段AB的垂直平分线的方程是(  )
A.3x+y=0B.x-3y=10C.3x+y=5D.x-3y=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,已知四边形ABCD,对角线AC恰好是∠DAB的平分线,$\overrightarrow{DO}=2\overrightarrow{OB}$,∠DOC=2∠ODA,则∠DAB=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一个盒子中装有大小相同的小球n个,在小球上分别标有1,2,3,…,n的号码,已知从盒子中随机地取出3个球,3个球的号码最大值为n的概率为$\frac{3}{8}$.
(1)求n的值;
(2)现从盒子中随机地取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量ξ(如取2468时,ξ=1;取1246时,或取1245时,ξ=2;取1235时,ξ=3).
(i)求 P(ξ=3)的值;        
(ii)求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{{\sqrt{1-x}}}$的定义域为M,函数g(x)=$\sqrt{1+x}$的定义域为N,则M∩N=(  )
A.[-1,1]B.[-1,∞)C.[-1,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等比数列{an}中,首项a1=2,公比q=3,an+an+1+…+am=720(m,n∈N*,m>n),则m+n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:
(1)sin4α+tan2α•cos4α+cos2α
(2)$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos4x-2sinxcosx-sin4x,x∈[0,$\frac{π}{2}$]
(1)求函数f(x)的值域;
(2)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=x2-2|x|+1的单调递减区间是(  )
A.(-1,0)∪(1,+∞)B.(-1,0)和(1,+∞)C.(-∞,-1)∪(0,1)D.(-∞,-1)和(0,1)

查看答案和解析>>

同步练习册答案