分析 (1)由题意$\frac{{C}_{n-1}^{2}}{{C}_{n}^{3}}$=$\frac{3}{8}$,由此能求出n.
(2)(i)基本事件总数n=${C}_{8}^{4}$,ξ=3包含的基本事件个数m=${C}_{2}^{1}{C}_{4}^{1}+{C}_{4}^{1}{C}_{3}^{1}$,由此能求出P(ξ=3).
(ii)由题意知ξ的所有可能取值为1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
解答 解:(1)∵一个盒子中装有大小相同的小球n个,
在小球上分别标有1,2,3,…,n的号码,已
从盒子中随机地取出3个球,3个球的号码最大值为n的概率为$\frac{3}{8}$.
∴$\frac{{C}_{n-1}^{2}}{{C}_{n}^{3}}$=$\frac{3}{8}$,
解得n=8.
(2)(i)基本事件总数n=${C}_{8}^{4}$=70,
ξ=3包含的基本事件个数m=${C}_{2}^{1}{C}_{4}^{1}+{C}_{4}^{1}{C}_{3}^{1}$=20,
P(ξ=3)=$\frac{m}{n}$=$\frac{20}{70}$=$\frac{2}{7}$.
(ii)由题意知ξ的所有可能取值为1,2,3,4,
P(ξ=1)=$\frac{5}{{C}_{8}^{4}}$=$\frac{1}{14}$,
P(ξ=4)=$\frac{5}{{C}_{8}^{4}}$=$\frac{1}{14}$,
P(ξ=3)=$\frac{2}{7}$.
P(ξ=2)=1-P(ξ=1)-P(ξ=3)-P(ξ=4)=$\frac{4}{7}$,
∴ξ的分布列为:
| ξ | 1 | 2 | 3 | 4 |
| P | $\frac{1}{14}$ | $\frac{2}{7}$ | $\frac{2}{7}$ | $\frac{1}{7}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(\frac{π}{6})<f(\frac{5}{6}π)$ | B. | $\sqrt{3}f(\frac{π}{6})>f(\frac{π}{3})$ | C. | $\sqrt{3}f(\frac{π}{2})>2f(\frac{π}{3})$ | D. | $2f(\frac{π}{6})<f(\frac{π}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2+b2<c2 | B. | $\overrightarrow{AB}$•$\overrightarrow{AC}$<0 | C. | tanAtanB>1 | D. | $\overrightarrow{BC}$•$\overrightarrow{AB}$>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com