精英家教网 > 高中数学 > 题目详情
12.下列极限存在的是(  )
A.$\underset{lim}{n→∞}$(-1)n+1B.$\underset{lim}{n→∞}$2nC.$\underset{lim}{x→{0}^{+}}$lnxD.$\underset{lim}{x→∞}$$\frac{1}{x}$

分析 分别对四个不同的选项讨论,从而确定答案.

解答 解:当n为奇数时,(-1)n+1=1,当n为偶数时,(-1)n+1=-1,故$\underset{lim}{n→∞}$(-1)n+1不存在;
当n→+∞时,2n→+∞,当n→-∞时,2n→0,故$\underset{lim}{n→∞}$2n不存在;
当x→0+时,lnx→-∞,故$\underset{lim}{x→{0}^{+}}$lnx不存在;
$\underset{lim}{x→∞}$$\frac{1}{x}$=0,
故选D.

点评 本题考查了分类讨论与转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)的导函数为f′(x),如对任意实数x,有f(x)>f′(x),且f(x)+1为奇函数,则不等式f(x)+ex<0的解集是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC的内角A、B、C所对的边分别为a,b,c,已知向量$\overrightarrow m$=(cosA,b),$\overrightarrow n$=(sinA,a),若$\overrightarrow m$,$\overrightarrow n$共线,且B为钝角.
(1)证明:B-A=$\frac{π}{2}$;
(2)若b=2$\sqrt{3}$,a=2,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知(x-2)2015=a0+a1x+a2x2+…+a2015x2015,则a1+2a2+3a3+…+2015a20152015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin75°的值等于(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四边形ABCD是圆O的内接四边形
(1)若AB=2,BC=6,AD=CD=4,求边形ABCD的面积;
(2)若圆O的半径为R=2,角B=60°,求四边形ABCD的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,内角A,B,C所对的边长分别为a,b,c,如果a=2,b=3,c=4,那么最大内角的余弦值等于(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若E={掷一枚骰子点数不超过6},则P(E)=(  )
A.P(E)=1B.P(E)=$\frac{1}{6}$C.P(E)=6D.P(E)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某个电脑用户计划使用不超过1000元的资金购买单价分别为80元、90元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买4盒,写出满足上述所有不等关系的不等式.

查看答案和解析>>

同步练习册答案