精英家教网 > 高中数学 > 题目详情
9.i为虚数单位,若($\sqrt{3}$+i)z=$\sqrt{3}$-1,那么|z|=(  )
A.1B.$\sqrt{\frac{2-\sqrt{3}}{2}}$C.$\sqrt{\frac{4+\sqrt{3}}{2}}$D.2

分析 把已知等式变形,利用复数代数形式的乘除运算化简,再代入复数模的计算公式得答案.

解答 解:∵($\sqrt{3}$+i)z=$\sqrt{3}$-1,
∴$z=\frac{\sqrt{3}-1}{\sqrt{3}+i}=\frac{(\sqrt{3}-1)(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)}$=$\frac{3-\sqrt{3}}{4}-\frac{\sqrt{3}-1}{4}i$.
∴|z|=$\sqrt{(\frac{3-\sqrt{3}}{4})^{2}+(-\frac{\sqrt{3}-1}{4})^{2}}=\sqrt{\frac{2-\sqrt{3}}{2}}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届山东潍坊临朐县高三10月月考数学(理)试卷(解析版) 题型:解答题

已知命题指数函数上是单调函数;命题.若命题“”为真命题,命题“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(文)试卷(解析版) 题型:解答题

某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?

幸福感强

幸福感弱

总计

留守儿童

非留守儿童

总计

(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.

参考公式:

附表:

0.050

0.010

3.841

6.635

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(文)试卷(解析版) 题型:选择题

若复数满足为虚数单位),则复数的虚部为( )

A.1 B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)图象相邻的一个最大值点和一个对称中心分别为($\frac{π}{6}$,2),($\frac{5π}{12}$,0),则g(x)=f(x)cos2x在区间[0,$\frac{π}{4}$)的值域为[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设点P(x,y)是不等式组$\left\{\begin{array}{l}{y≥0}\\{x-2y+1≥0}\\{x+y≤3}\end{array}\right.$,所表示的平面区域内的任意一点,向量$\overrightarrow{m}$=(1,1),$\overrightarrow{n}$=(2,1),点O是坐标原点.若向量$\overrightarrow{OP}$=λ$\overrightarrow{m}$+μ$\overrightarrow{n}$(λ,μ∈R),则λ-μ的取值范围是(  )
A.[-$\frac{3}{2}$,$\frac{2}{3}$]B.[-6,2]C.[-1,$\frac{7}{2}$]D.[-4,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义区间[x1,x2]的长度为x2-x1(x2>x1)单调递增),函数$f(x)=\frac{{({a^2}+a)x-1}}{{{a^2}x}}$(a∈R,a≠0)的定义域与值域都是[m,n](n>m),则区间[m,n]取最大长度时实数a的值(  )
A.$\frac{{2\sqrt{3}}}{3}$B.-3C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设α,β是两个平面,直线a?α则“a∥β”是“α∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司要招聘甲、乙两类员工共150人,该公司员工的工资由基础工资组成.其中甲、乙两类员工每人每月的基础工资分别为2千元和3千元,甲类员工每月的人均绩效工资与公司月利润成正比,比例系数为a(a>0),乙类员工每月的绩效工资与公司月利润的平方成正比,比例系数为b(b>0).
(Ⅰ)若要求甲类员工的人数不超过乙类员工人数的2倍,问甲、乙两类员工各招聘多少人时,公司每月所付基础工资总额最少?
(Ⅱ)若该公司每月的利润为x(x>0)千元,记甲、乙两类员工该月人均工资分别为w千元和w千元,试比较w和w的大小.(月工资=月基础工资+月绩效工资)

查看答案和解析>>

同步练习册答案