精英家教网 > 高中数学 > 题目详情
7.已知E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ}.则E∩F为(  )
A.$(\frac{π}{2},π)$B.$(\frac{π}{4},\frac{3π}{4})$C.$(π,\frac{3π}{2})$D.$(\frac{3π}{4},\frac{5π}{4})$

分析 分别求出E与F中θ的范围,求出两集合的交集即可.

解答 解:由cosθ<sinθ,0≤θ≤2π,得到$\frac{π}{4}$<θ<$\frac{5π}{4}$,即E=($\frac{π}{4}$,$\frac{5π}{4}$),
由tanθ<sinθ,得到$\frac{π}{2}$+kπ<θ<π+kπ,k∈Z,即F=($\frac{π}{2}$+kπ,π+kπ),k∈Z,
则E∩F=($\frac{π}{2}$,π).
故选:A.

点评 此题考查了交集及其运算,解题时要认真审题,注意三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E-ABCD(如图2),且DE⊥AB.
(Ⅰ)求证:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;
(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求$\frac{EF}{EA}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-x-2>0},B={x|x>1},则A∪B=(  )
A.{x|x>1}B.{x|x≤-1}C.{x|x>1或x<-1}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,设ABCD和ABEF均为平行四边形,他们不在同一平面内,M,N分别为对角线AC,BF上的点,且AM:AC=FN:BF.
求证:MN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数$f(x)={({\frac{1}{3}})^{|x-t|}}$+2(t∈R)为偶函数,记a=f(-log34),b=f(log25),c=f(2t),a,b,c大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来:
(1)60°;
(2)-21°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知M,N分别为椭圆C的左右焦点,P为椭圆C上的点,若椭圆C存在4个点满足条件∠MPN=60°,那么椭圆的离心率取值范围($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.与圆x2+(y-2)2=2相切,且在两坐标轴上的截距相等的直线方程为y=±x或y=-x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(x+y+3)3展开式中不含y的各项系数之和为64.

查看答案和解析>>

同步练习册答案