ijͬѧÔÚÒ»´ÎÑо¿ÐÔѧϰÖз¢ÏÖ£¬ÒÔÏÂÎå¸öʽ×ÓµÄÖµ¶¼µÈÓÚͬһ¸ö³£Êý£º
¢Ùcos213¡ã+cos273¡ã-cos13¡ãcos73¡ã£»
¢Úcos215¡ã+cos275¡ã-cos15¡ãcos75¡ã£»
¢Ûcos240¡ã+cos2100¡ã-cos40¡ãcos100¡ã£»
¢Ücos2£¨-30¡ã£©+cos230¡ã-cos£¨-30¡ã£©cos30¡ã£»
¢Ýcos2£¨-12¡ã£©+cos248¡ã-cos£¨-12¡ã£©cos48¡ã£®
£¨1£©ÊÔ´ÓÉÏÊöÎå¸öʽ×ÓÖÐÑ¡ÔñÒ»¸ö£¬Çó³öÕâ¸ö³£Êý£»
£¨2£©¸ù¾Ý£¨1£©µÄ¼ÆËã½á¹û£¬½«¸ÃͬѧµÄ·¢ÏÖÍÆ¹ãΪÈý½ÇºãµÈʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
¿¼µã£ºÊýѧ¹éÄÉ·¨,¹éÄÉÍÆÀí
רÌâ£ºÍÆÀíºÍÖ¤Ã÷
·ÖÎö£º£¨1£©ÕâÊÇÒ»¸öÀûÓÃÈý½Çº¯Êý¹«Ê½½øÐб任»¯¼òÇóÖµµÄÎÊÌ⣬Ö÷ÒªÊÇץס¡°½Ç¡±Ö®¼äµÄ¹ØÏµ£¬ÁªÏë½èÖú½µÃݹ«Ê½¼°ÄæÓÃÁ½½ÇºÍÓë²îµÄÕýÓàÏÒ¹«Ê½¿ÉÇóµÃ½á¹û£»
£¨2£©ÒÀ¾Ýʽ×ÓµÄ½á¹¹ÌØµã¡¢½ÇÖ®¼äµÄ¹ØÏµ£¬¿ÉÒԵõ½ÐÎÈç¡°cos2¦Á+cos2£¨¦Á+60¡ã£©-cos¦Ácos£¨¦Á+60¡ã£©=C¡±µÄ¹æÂÉ£®È»ºóÀûÓú͵ڣ¨1£©ÎÊÀàËÆµÄ˼·½øÐÐÖ¤Ã÷£®
½â´ð£º ½â£º£¨1£©¶ÔÓÚ¢Ùʽ£¬Ô­Ê½=cos213¡ã+cos273¡ã-cos13¡ãcos£¨60¡ã+13¡ã£©
=cos213¡ã+cos273¡ã-cos13¡ã£¨
1
2
cos13¡ã-
3
2
sin13¡ã
£©
=
1
2
cos213¡ã
+
3
4
sin26¡ã
+cos273¡ã
=
1+cos26¡ã
4
+
3
4
sin26¡ã+
1+cos146¡ã
2

=
3
4
+
1
2
(
1
2
cos26¡ã+
3
2
sin26¡ã)-
1
2
cos34¡ã

=
3
4
+
1
2
(cos60¡ãcos26¡ã+sin60¡ãsin26¡ã)
-
1
2
cos34¡ã

=
3
4
+
1
2
cos34¡ã-
1
2
cos34¡ã

=
3
4
£®
£¨2£©¸ù¾Ýʽ×ÓÌØµã²ÂÏ룺cos2¦Á+cos2£¨¦Á+60¡ã£©-cos¦Ácos£¨¦Á+60¡ã£©=
3
4

Ö¤Ã÷£ºÔ­Ê½×ó±ß=cos2¦Á+£¨cos¦Ácos60¡ã-sin¦Ásin60¡ã£©2-cos¦Á£¨cos¦Ácos60¡ã-sin¦Ásin60¡ã£©
=cos2¦Á+
1
4
cos2¦Á
-2¡Á
1
2
¡Á
3
2
sin¦Ácos¦Á
+
3
4
sin2¦Á
-
1
2
cos2¦Á+
3
2
sin¦Ácos¦Á

=
3
4
cos2¦Á
+
3
4
sin2¦Á
-
3
2
sin¦Ácos¦Á+
3
2
sin¦Ácos¦Á

=
3
4
(sin2¦Á+cos2¦Á)

=
3
4
£®
µãÆÀ£º¹éÄÉÍÆÀíÒ»°ãÊÇÏȸù¾Ý¸ö±ðÇé¿öËùÌåÏÖ³öÀ´µÄijЩÏàͬµÄ¹æÂÉ£¬È»ºó´ÓÕâЩÒÑÖªµÄÏàͬÐÔÖʹæÂÉÍÆ³öÒ»¸öÃ÷È·µÄÒ»°ãÐÔ¹æÂÉ»òÐÔÖÊ£®´ËÌâÊÇÒ»¸öÈý½Çº¯Êýʽ£¬ËùÒÔÖØµãץס½ÇÖ®¼äµÄ¹ØÏµ£¬Ê½×ÓµÄ½á¹¹ÌØµã½øÐйéÄÉ£¬µÃ³öÒ»°ãÐÔ½áÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¦Á¡¢¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬m¡¢nÊÇÆ½Ãæ¦Á¼°¦ÂÖ®ÍâµÄÁ½Ìõ²»Í¬Ö±Ïߣ¬¸ø³öËĸöÂÛ¶Ï£º¢Ùm¡Ín£»¢Ú¦Á¡Í¦Â£»¢Ûn¡Í¦Â£»¢Üm¡Í¦Á£®ÒÔÆäÖÐÈý¸öÂÛ¶Ï×÷ΪÌõ¼þ£¬ÓàÏÂÒ»¸ö×÷Ϊ½áÂÛ£¬ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A¡¢1¸öB¡¢2¸öC¡¢3¸öD¡¢4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»ð³µÕ¾A±±Æ«¶«30¡ã·½ÏòµÄC´¦ÓÐÒ»µçÊÓËþ£¬»ð³µÕ¾Õý¶«·½ÏòµÄB´¦ÓÐһСÆû³µ£¬²âµÃBC¾àÀëΪ31km£¬¸ÃСÆû³µ´ÓB´¦ÒÔ60¹«ÀïÿСʱµÄËÙ¶ÈǰÍù»ð³µÕ¾£¬20·ÖÖÓºóµ½´ïD´¦£¬²âµÃÀëµçÊÓËþ21km£¬ÎÊСÆû³µµ½»ð³µÕ¾»¹Ðè¶à³¤Ê±¼ä£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ln
a+x
1-x
ÎªÆæº¯Êý£¬ÆäÖÐaΪ³£Êý£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©ÉϵÄÈÎÒâÒ»µãPµ½¸ÃÅ×ÎïÏß½¹µãµÄ¾àÀë±È¸Ãµãµ½yÖáµÄ¾àÀë¶à1£® 
£¨¢ñ£©ÇópµÄÖµ£»
£¨¢ò£©ÈçͼËùʾ£¬¹ý¶¨µãQ£¨2£¬0£©ÇÒ»¥Ïà´¹Ö±µÄÁ½ÌõÖ±Ïßl1¡¢l2·Ö±ðÓë¸ÃÅ×ÎïÏß·Ö±ð½»ÓÚA¡¢C¡¢B¡¢DËĵ㣮
£¨i£©ÇóËıßÐÎABCDÃæ»ýµÄ×îСֵ£»
£¨ii£©ÉèÏß¶ÎAC¡¢BDµÄÖеã·Ö±ðΪM¡¢NÁ½µã£¬ÊÔÎÊ£ºÖ±ÏßMNÊÇ·ñ¹ý¶¨µã£¿ÈôÊÇ£¬Çó³ö¶¨µã×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=4x3+3tx2-6t2x+t-1£¨x¡ÊR£©£¬ÆäÖÐt¡ÊR£®
£¨¢ñ£©µ±t=1ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©µ±t¡Ù0ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1£©ÄÚ´æÔÚÁãµã£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=ax3+bx2+cµÄͼÏó¾­¹ýµã£¨0£¬1£©£¬ÇÒÔÚx=1´¦µÄÇÐÏß·½³ÌÊÇy=x£®
£¨1£©Çóy=f£¨x£©µÄ½âÎöʽ£»
£¨2£©Çóy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖª¡ÏB=45¡ã£¬DÊÇBC±ßÉϵÄÒ»µã£¬AD=10£¬AC=14£¬DC=6£®
£¨1£©Çó¡ÏADBµÄ´óС£¿
£¨2£©ÇóABµÄ³¤£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=£¨2x2-6x+a+6£©•ex£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Çóº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷Çø¼ä£»
£¨2£©É躯Êýg£¨x£©=f£¨x£©+£¨2x-a-4£©•ex£¬ÊÇ·ñ´æÔÚÇø¼ä[m£¬n]⊆£¨1£¬+¡Þ£©£¬Ê¹µÃµ±x¡Ê[m£¬n]ʱº¯Êýg£¨x£©µÄÖµÓòΪ[2m£¬2n]£¬Èô´æÔÚÇó³öm£¬n£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸