精英家教网 > 高中数学 > 题目详情
8.设不等式$\left\{\begin{array}{l}{x+y≤4}\\{y-x≥0}\\{x-1≥0}\end{array}\right.$表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r2(r>0)经过区域D上的点,则r的取值范围是(  )
A.(-∞,2$\sqrt{2}$)∪(2$\sqrt{5}$,+∞)B.(2$\sqrt{2}$,3$\sqrt{2}$]C.(3$\sqrt{2}$,2$\sqrt{5}$]D.[2$\sqrt{2}$,2$\sqrt{5}$]

分析 作出题中不等式组表示的平面区域,得到如图的△MNP及其内部,而圆C表示以(-1,-1)为圆心且半径为r的圆.观察图形,可得半径r<CM或r>CP时,圆C不经过区域D上的点,由此结合平面内两点之间的距离公式,即可得到r的取值范围.

解答 解:作出不等式组$\left\{\begin{array}{l}{x+y≤4}\\{y-x≥0}\\{x-1≥0}\end{array}\right.$表示的平面区域如图,
联立方程组求得M(1,1),N(2,2),P(1,3),
∵圆C:(x+1)2+(y+1)2=r2(r>0)表示以C(-1,-1)为圆心,半径为r的圆.
由图可知:当半径r满足CM≤r≤CP时,圆C经过区域D上的点,
而$CM=\sqrt{(1+1)^{2}+(1+1)^{2}}=2\sqrt{2}$,$CP=\sqrt{(1+1)^{2}+(3+1)^{2}}=2\sqrt{5}$,
∴当r∈[$2\sqrt{2},2\sqrt{5}$]时,圆C经过区域D上的点,
故选:D.

点评 本题考查基地的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.数列{an}满足a1=1,an+1+an=2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若0≤a≤1,解关于x的不等式(x-a)(x+a-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,则$\frac{x+{x}^{-1}-3}{{x}^{2}+{x}^{-2}-2}$等于(  )
A.$\frac{4}{45}$B.-$\frac{4}{45}$C.±$\frac{4}{45}$D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.事件A,B,C相互独立,若P(A•B)=$\frac{1}{6}$,P($\overline{B}$•C)=$\frac{1}{8}$,P(A•B•$\overline{C}$)=$\frac{1}{8}$,则P(B)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=sin({2x-\frac{π}{6}})$.
(1)求函数f(x)的最小正周期和单调减区间;
(2)求函数f(x)在区间$[{-\frac{π}{12},\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|x2-7x+10<0},集合B={x|$\frac{1}{2}$<2x<8},则A∪B=(  )
A.(-1,3)B.(-1,5)C.(2,5)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{x(x≥1)}\\{{t}^{2}(x<1)}\end{array}\right.$的值域为[1,+∞),则实数t的取值范围是t≥1或t≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设y=f(x)存在导数,且满足$\lim_{△→0}\frac{f(1-△x)-f(1)}{△x}$=1,则曲线y=f(x)在(1,f(1))处的切线倾斜角为(  )
A.30°B.135°C.45°D.120°

查看答案和解析>>

同步练习册答案