精英家教网 > 高中数学 > 题目详情
3.已知某几何体的三视图如图所示,正视图与侧视图都是上底为2,下底为4,底角为60°的等腰梯形,俯视图是直径分别为2和4的同心圆,则该几何体的表面积为(  )
A.B.C.11πD.$({9+2\sqrt{3}})π$

分析 由三视图可以看出,本题中的几何体是一个圆台去掉一个圆柱,根据圆柱和圆台的表面积公式进行求解即可.

解答 解:由三视图知此几何体是一个圆台去掉一个圆柱,圆台的上底面半径为1,下底半径为2,高为$\sqrt{3}$,母线l=2,
圆柱的底面半径为1,高为$\sqrt{3}$,
则圆柱的侧面积为2$π×\sqrt{3}$=2$\sqrt{3}$π,
圆台的侧面积S=π(1+2)×2=6π,
底面面积S=4π-π=3π,
则该几何体的表面积为2$\sqrt{3}$π+6π+3π=(9+2$\sqrt{3}$)π,
故选:D

点评 本题主要考查几何体的表面积的计算,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$cosωx),其中0<ω<2,设f(x)=$\overrightarrow{a}•\overrightarrow{b}$;
(1)若函数f(x)的周期为2π,求函数f(x)的单调增区间;
(2)若函数f(x)的图象的一条对称轴为x=$\frac{π}{6}$,求ω的值;
(3)若ω=1,且x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,求函数f(x)的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.正方体ABCD-A1B1C1D1中,异面直线B1C与C1D所成的角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率e=$\sqrt{3}$,且b=$\sqrt{2}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且$\overrightarrow{PE}$•$\overrightarrow{PF}$=0,求△PEF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),离心率e=$\frac{{\sqrt{2}}}{2}$,且过$(\frac{{\sqrt{6}}}{2},\frac{1}{2})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点B为椭圆C在第一象限中的任意一点,过B作C的切线l,l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$的弦被点(4,2)平分,则此弦所在的直线方程是(  )
A.x-2y=0B.x+2y=4C.2x+3y=14D.x+2y=8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的首项${a_1}=\frac{3}{5},{a_{n+1}}=\frac{{3{a_n}}}{{2{a_n}+1}}(n∈{N^*})$,{an}的前n项和为Sn
(1)求证:数列$\left\{{\frac{1}{a_n}-1}\right\}$是等比数列,并求数列{an}的通项公式;
(2)证明:对任意的$x>0,{a_n}≥\frac{1}{1+x}-\frac{1}{{{{(1+x)}^2}}}(\frac{2}{3^n}-x),n∈{N^*}$.
(3)证明:${S_n}>\frac{n^2}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC中,已知AB=2,BC=5,S△ABC=4,∠ABC=θ,则cosθ=$±\frac{3}{5}$.

查看答案和解析>>

同步练习册答案