精英家教网 > 高中数学 > 题目详情

【题目】是定义在上的奇函数,且对任意实数,恒有,当时,

(1)求证: 是周期函数;

(2)当时,求的解析式;

(3)计算

【答案】(1)证明见解析;(2);(3).

【解析】试题分析:(1)根据条件利用是定义在上的奇函数, 可得从而证得结论;(2)利用函数的奇偶性和周期性,求得当函数的解析式;(3)利用周期为以及的值,可得的值.

试题解析:(1)证明:∵,∴.∴是周期为4的周期函数.

(2)∵,∴,∴

,∴

,∴,即

(3)∵

是周期为4的周期函数,

【方法点晴】本题主要考查函数的解析式及函数的周期性,属于难题.对函数周期性的考查主要命题方向由两个,一是三角函数,可以用公式求出周期;二是抽象函数,往往需要根据条件判断出周期,抽象函数给出条件判断周期的常见形式为:

(1) ;(2)

(3) .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设,求的最小值;

(2)若曲线仅有一个交点,证明:曲线在点处有相同的切线,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1, )在椭圆E: =1上,若斜率为 的直线l与椭圆E交于B,C两点,当△ABC的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函数 在[1,+∞)上单调递减.
(I)若p∧q为真命题,求m的取值范围;
(II)若p∨q为真命题,p∧q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令
(Ⅰ)证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB= ,BC=1,P为△ABC内一点,∠BPC=90°.

(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车乙种肥料的主要原料是磷酸盐1t、硝酸盐15t.现库存磷酸盐10t、硝酸盐66t.已知生产1车皮甲种肥料,产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元.那么分别生产甲、乙两种肥料各多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案