精英家教网 > 高中数学 > 题目详情
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
f′(x)=ax-(2a+1)+(x>0).
(1) f′(1)=f′(3),解得a=.(4分)
(2) f′(x)=(x>0).
①当0<a<时,>2,
在区间(0,2)和上,f′(x)>0;
在区间上,f′(x)<0,
故f(x)的单调递增区间是(0,2)和,单调递减区间是.(6分)
②当a=时,f′(x)=≥0,故f(x)的单调递增区间是(0,+∞).(8分)
③当a>时,0<<2,在区间和(2,+∞)上,f′(x)>0;在区间上,f′(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.(10分)
(3) 由已知,在(0,2]上有f(x)max<g(x)max.(11分)
由已知,g(x)max=0,由(2)可知,
①当0<a≤时,f(x)在(0,2]上单调递增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2
=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故0<a≤.(13分)
②当a>时,f(x)在]上单调递增,在]上单调递减,
故f(x)max=f=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,f(x)max<0,(15分)
综上所述,a>0.(16分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知函数的图像过点,且在点处的切线方程为
(1)求函数的解析式 ;     
(2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数的图像过,且
(Ⅰ)求的解析式;
(Ⅱ)若数列满足,且,求数列的通项公式;
(Ⅲ)记为数列的前项和.求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若不等式x>0,所确定的平面区域被直线分为面积相等的两部分,则k的值是(    )
A.1B. 2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
设函数处的切线方程为
(Ⅰ)求的解析式;
(Ⅱ)证明:曲线上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知a,b为常数,且a≠0,函数(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


曲线在点处的切线斜率为    ▲  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


曲线在点处的切线斜率为    ▲  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x2-2ln x的单调减区间是______

查看答案和解析>>

同步练习册答案