精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=2sin(2x+$\frac{π}{6}$)-1,x∈[0,$\frac{π}{4}$],则f(x)的最大值与最小值分别为1和0.

分析 由条件利用正弦函数的定义域和值域,求得f(x)的最大值与最小值.

解答 解:∵函数f(x)=2sin(2x+$\frac{π}{6}$)-1,x∈[0,$\frac{π}{4}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴当2x+$\frac{π}{6}$=$\frac{π}{6}$时,f(x)取得最小值为1-1=0,当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值为2-1=1,
故答案为:1;0.

点评 本题主要考查正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知(x+1)6(x-a)2的展开式中含x2项的系数是37,(a>0),则a的值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简(1+tan1°)•(1+tan2°)•(1+tan43°)•(1+tan44°)的结果为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解方程组$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2x-6y+6=0}\\{{x}^{2}+{y}^{2}-6x-10y+30=0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在平面直角坐标系中,ABCDEF为正六边形,边长为1,BE在x轴上,BE的中点是坐标原点O.
(1)写出与向量$\overrightarrow{OF}$相等的一个向量,其起点与终点是A、B、O、E、F中的两个点.
(2)设向量$\overrightarrow{a}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求向量$\overrightarrow{a}$的坐标,并在图中画出向量$\overrightarrow{a}$的负向量,要求所画向量的起点与终点是A、B、O、E、F中的两个点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求和:Sn=$\frac{{2}^{2}+1}{{2}^{2}-1}$+$\frac{{3}^{2}+1}{{3}^{2}-1}$+…+$\frac{(n+1)^{2}+1}{(n+1)^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.计算$\frac{sin110°sin20°}{co{s}^{2}25°-si{n}^{2}25°}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a=$\sqrt{5}$,b=3,sinC=2sinA.
(1)求c的值;
(2)求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知(1+2x)4(1-x23=a0+a1x+a2x2+…+a10x10
(Ⅰ)求a1+a2+…+a10的值;
(Ⅱ)求a2的值
(Ⅲ)将a1,a2,a3,a4,a5,a6这六个不同的符号,放入编号为1,2,3,4,5,6的6个盒子中,每个盒内放一个数,若a1,a2,a3,a4,a5,a6这六个符号中至多有三个符号的下标与盒子编号相同,求不同的投放方法的种数.

查看答案和解析>>

同步练习册答案