分析 第一空,求出分段函数的解析式,然后求解函数值即可.第二空,利用分段函数列出不等式求解即可.
解答 解:a=$\frac{1}{4}$,f(x)=max{($\frac{1}{4}$)x-$\frac{1}{4}$,-log$\frac{1}{4}$x}=$\left\{\begin{array}{l}{(\frac{1}{4})^{x}-\frac{1}{4},0<x≤1}\\{-lo{g}_{\frac{1}{4}}x,x>1}\end{array}\right.$,
则f(2)+f(${\frac{1}{2}}$)=$\frac{1}{2}+$$\frac{1}{2}-\frac{1}{4}$=$\frac{3}{4}$.
不等式f(x)≥2,可得ax-a≥2,解得x≥loga(a+2),-logax≥2,解得$0<x≤\frac{1}{{a}^{2}}$.
故答案为:$\frac{3}{4}$,$\{x|0<x≤\frac{1}{a^2}$或 x≥loga(a+2)},
点评 本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | [-1,4] | B. | [-4,1] | C. | (0,1] | D. | (0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p,q都正确 | B. | 命题p正确,命题q不正确 | ||
| C. | 命题p,q都不正确 | D. | 命题q不正确,命题p正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | $(0,\frac{1}{3})$ | C. | $[\frac{1}{7},\frac{1}{3})$ | D. | $[\frac{1}{7},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数,且在(0,2)上是增函数 | B. | 奇函数,且在(0,2)上是减函数 | ||
| C. | 偶函数,且在(0,2)上是增函数 | D. | 偶函数,且在(0,2)上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com