10£®ÉèµãOÎª×ø±êÔ­µã£¬ÍÖÔ²$E£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ¶¥µãΪA£¬É϶¥µãΪB£¬¹ýµãOÇÒбÂÊΪ$\frac{1}{6}$µÄÖ±ÏßÓëÖ±ÏßABÏཻM£¬ÇÒ$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{BM}$£®
£¨¢ñ£©ÇóÖ¤£ºa=2b£»
£¨¢ò£©PQÊÇÔ²C£º£¨x-2£©2+£¨y-1£©2=5µÄÒ»ÌõÖ±¾¶£¬ÈôÍÖÔ²E¾­¹ýP£¬QÁ½µã£¬ÇóÍÖÔ²EµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÔËÓÃÏòÁ¿µÄ×ø±êÔËË㣬¿ÉµÃMµÄ×ø±ê£¬½ø¶øµÃµ½Ö±ÏßOMµÄбÂÊ£¬½ø¶øµÃÖ¤£»
£¨¢ò£©ÓÉ£¨¢ñ£©Öªa=2b£¬ÍÖÔ²·½³ÌÉèΪx2+4y2=4b2£¨1£©£¬ÉèPQµÄ·½³Ì£¬´úÈë·½³Ì£¨1£©£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬½â·½³Ì¼´¿ÉµÃµ½a£¬bµÄÖµ£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£®

½â´ð ½â£º£¨¢ñ£©Ö¤Ã÷£º¡ßA£¨a£¬0£©£¬B£¨0£¬b£©£¬$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{BM}$£¬
¼´Îª£¨a-xM£¬0-yM£©=$\frac{1}{3}$£¨xM-0£¬yM-b£©£¬
¼´ÓÐa-xM=$\frac{1}{3}$xM£¬-yM=$\frac{1}{3}$£¨yM-b£©£¬
ËùÒÔ$M£¨\frac{3a}{4}£¬\frac{1}{4}b£©$£¬
¡à${k_{OM}}=\frac{b}{3a}=\frac{1}{6}$£¬½âµÃa=2b£»
£¨¢ò£©ÓÉ£¨¢ñ£©Öªa=2b£¬¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{x^2}{{4{b^2}}}+\frac{y^2}{b^2}=1$£¬¼´x2+4y2=4b2£¨1£©
ÒÀÌâÒ⣬ԲÐÄC£¨2£¬1£©ÊÇÏß¶ÎPQµÄÖе㣬ÇÒ$|PQ|=2\sqrt{5}$£®
ÓɶԳÆÐÔ¿ÉÖª£¬PQÓëxÖá²»´¹Ö±£¬ÉèÆäÖ±Ïß·½³ÌΪy=k£¨x-2£©+1£¬
´úÈ루1£©µÃ£º
£¨1+4k2£©x2-8k£¨2k-1£©x+4£¨2k-1£©2-4b2=0
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=\frac{8k£¨2k-1£©}{{1+4{k^2}}}$£¬${x_1}{x_2}=\frac{{4{{£¨2k-1£©}^2}-4{b^2}}}{{1+4{k^2}}}$£¬
ÓÉ$\frac{{{x_1}+{x_2}}}{2}=2$µÃ$\frac{8k£¨2k-1£©}{{1+4{k^2}}}=4$£¬½âµÃ$k=-\frac{1}{2}$£®
´Ó¶øx1x2=8-2b2£®
ÓÚÊÇ$|PQ|=\sqrt{1+{k^2}}|{x_1}-{x_2}|=\frac{{\sqrt{5}}}{2}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\sqrt{5}\sqrt{2{b^2}-4}=2\sqrt{5}$
½âµÃb2=4£¬a2=16£¬¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{x^2}{16}+\frac{y^2}{4}=1$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚÏÂÁÐÎå¸öÃüÌâÖУº
¢ÙÒÑÖª´óС·Ö±ðΪ1NÓë2NµÄÁ½¸öÁ¦£¬ÒªÊ¹ºÏÁ¦´óСǡΪ$\sqrt{6}N$£¬ÔòËüÃǵļнÇΪ$\frac{¦Ð}{3}$£»
¢ÚÒÑÖª$¦Á=\frac{2¦Ð}{5}$£¬$¦Â=-\frac{¦Ð}{7}$£¬Ôòsin¦Á£¼cos¦Â£»
¢ÛÈôA£¬B£¬CÊÇб¡÷ABCµÄÈý¸öÄڽǣ¬ÔòºãÓÐtanA+tanB+tanC=tanAtanBtanC³ÉÁ¢£»
¢Ü$¼ÆËãʽ×Ósin{50^0}£¨1+\sqrt{3}tan{10^0}£©µÄ½á¹ûÊÇ\frac{1}{2}$£»
¢ÝÒÑÖª$\sqrt{3}£¨cosx+1£©=sinxÇÒx¡Ê£¨0£¬\frac{3¦Ð}{2}£©$£¬ÔòxµÄ´óСΪ$\frac{2¦Ð}{3}$£»
ÆäÖдíÎóµÄÃüÌâÓТ٢ڢܢݣ®£¨Ð´³öËùÓдíÎóÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªc=2£¬cosB=$\frac{1}{3}$£®
£¨1£©Èôb=2$\sqrt{2}$£¬ÇósinAµÄÖµ£»
£¨2£©ÈôµãDÔÚ±ßACÉÏ£¬ÇÒ$\overrightarrow{DC}$=$\frac{1}{3}$$\overrightarrow{AC}$£¬|$\overrightarrow{BD}$|=$\frac{4\sqrt{3}}{3}$£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®£¨B×éÌ⣩É趨ÒåÔÚRÉÏµÄÆæº¯Êýy=f£¨x£©Âú×㣺¶ÔÈÎÒâµÄx¡ÊR£¬×ÜÓÐf£¨x-4£©=f£¨x+4£©£¬ÇÒµ±x¡Ê£¨0£¬4£©Ê±£¬$f£¨x£©={e^{x-\frac{¦Ð}{2}}}+|{cosx}|-2$£®Ôòº¯Êýf£¨x£©ÔÚÇø¼ä[-8£¬16£©ÉϵÄÁãµã¸öÊýÊÇ£¨¡¡¡¡£©
A£®6B£®9C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èô¸´ÊýzµÄ¹²éÊý$\overline z=2+i$£¬Ôò¸´ÊýzµÄÄ£³¤Îª£¨¡¡¡¡£©
A£®2B£®-1C£®5D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=lnx+a£¨1-x£©£¬a¡ÊR£®
£¨I£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨II£©Èô¶ÔÈÎÒâµÄx¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ü2a-2£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º1+$\frac{1}{2}$+$\frac{1}{3}$+¡­+$\frac{1}{{2}^{n}-1}$£¼n£¨n¡ÊN*£¬n¡Ý2£©Ê±£¬µÚ¶þ²½Ö¤Ã÷ÓÉ¡°kµ½k+1¡±Ê±£¬×ó¶ËÔö¼ÓµÄÏîÊýÊÇ£¨¡¡¡¡£©
A£®2k-1B£®2kC£®2k-1D£®2k+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëµÄx=2£¬ÔòÊä³öµÄyµÈÓÚ£¨¡¡¡¡£©
A£®2B£®4C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Ò»ÌõѲÂß´¬ÓÉÄÏÏò±±ÐÐÊ»£¬ÔÚA´¦²âµÃɽ¶¥PÔÚ±±Æ«¶«15¡ã£¨¡ÏBAC=15¡ã£©·½ÏòÉÏ£¬ÔÈËÙÏò±±º½ÐÐ20·ÖÖÓµ½´ïB´¦£¬²âµÃɽ¶¥PλÓÚ±±Æ«¶«60¡ã·½ÏòÉÏ£¬´Ëʱ²âµÃɽ¶¥PµÄÑö½Ç60¡ã£¬Èôɽ¸ßΪ$2\sqrt{3}$ǧÃ×£¬
£¨1£©´¬µÄº½ÐÐËÙ¶ÈÊÇÿСʱ¶àÉÙǧÃ×£¿
£¨2£©Èô¸Ã´¬¼ÌÐøº½ÐÐ10·ÖÖÓµ½´ïD´¦£¬ÎÊ´Ëʱɽ¶¥Î»ÓÚD´¦µÄÄÏÆ«¶«Ê²Ã´·½Ïò£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸