1£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªc=2£¬cosB=$\frac{1}{3}$£®
£¨1£©Èôb=2$\sqrt{2}$£¬ÇósinAµÄÖµ£»
£¨2£©ÈôµãDÔÚ±ßACÉÏ£¬ÇÒ$\overrightarrow{DC}$=$\frac{1}{3}$$\overrightarrow{AC}$£¬|$\overrightarrow{BD}$|=$\frac{4\sqrt{3}}{3}$£¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©ÓÉcosB=$\frac{1}{3}$£¬b=2$\sqrt{2}$£¬µÃsinB=$\frac{2\sqrt{2}}{3}$£¬ÓÉÕýÏÒ¶¨ÀíµÃsinC=$\frac{2}{3}$£¬´Ó¶øcosC=$\frac{\sqrt{5}}{3}$£¬ÓÉ´ËÄÜÇó³ösinA£®
£¨2£©Çó³ö$\overrightarrow{BD}=\overrightarrow{BA}+\frac{2}{3}\overrightarrow{AC}$=$\overrightarrow{BA}+\frac{2}{3}£¨\overrightarrow{BC}-\overrightarrow{BA}£©$=$\frac{1}{3}\overrightarrow{BA}+\frac{2}{3}\overrightarrow{BC}$£¬ÓÉ´ËÄÜÇó³öaµÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬
c=2£¬cosB=$\frac{1}{3}$£¬b=2$\sqrt{2}$£¬
¡àsinB=$\frac{2\sqrt{2}}{3}$£¬
ÕýÏÒ¶¨ÀíµÃ$\frac{c}{sinC}=\frac{2}{sinC}=\frac{b}{sinB}$=$\frac{2\sqrt{2}}{\frac{2\sqrt{2}}{3}}$=3£¬¡àsinC=$\frac{2}{3}$£¬
¡ßc£¼b£¬¡àCΪÈñ½Ç£¬¡àcosC=$\frac{\sqrt{5}}{3}$£¬
¡àsinA=sin£¨B+C£©=sinBcosC+cosBsinC
=$\frac{2\sqrt{2}}{3}•\frac{\sqrt{5}}{3}+\frac{1}{3}•\frac{2}{3}$=$\frac{2+2\sqrt{10}}{9}$£®
£¨2£©¡ßµãDÔÚ±ßACÉÏ£¬ÇÒ$\overrightarrow{DC}$=$\frac{1}{3}$$\overrightarrow{AC}$£¬|$\overrightarrow{BD}$|=$\frac{4\sqrt{3}}{3}$£¬
¡à$\overrightarrow{BD}=\overrightarrow{BA}+\frac{2}{3}\overrightarrow{AC}$=$\overrightarrow{BA}+\frac{2}{3}£¨\overrightarrow{BC}-\overrightarrow{BA}£©$=$\frac{1}{3}\overrightarrow{BA}+\frac{2}{3}\overrightarrow{BC}$£¬
¡à|$\overrightarrow{BD}$|2=$\frac{1}{9}{\overrightarrow{BA}}^{2}+\frac{4}{9}{\overrightarrow{BC}}^{2}+\frac{4}{9}\overrightarrow{BA}•\overrightarrow{BC}$
=$\frac{1}{9}{c}^{2}+\frac{4}{9}{a}^{2}+\frac{4}{9}accosB$
=$\frac{4}{9}+\frac{4}{9}{a}^{2}+\frac{8}{27}a$£¬
½âµÃa=3£®

µãÆÀ ±¾Ì⿼²é½ÇµÄÕýÏÒÖµµÄÇ󷨣¬¿¼²éʵÊýÖµµÄÇ󷨣¬¿¼²éͬ½ÇÈý½Çº¯Êý¡¢ÕýÏÒ¶¨Àí¡¢ÏòÁ¿µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÔÆ½ÃæÖ±½Ç×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖᣬÔòÖ±½Ç×ø±êΪ£¨-2£¬2£©µÄµãµÄ¼«×ø±êΪ£¨¡¡¡¡£©
A£®£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©B£®£¨2$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©C£®£¨2£¬$\frac{¦Ð}{4}$£©D£®£¨2£¬$\frac{3¦Ð}{4}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ä³²úÆ·µÄ¹ã¸æ·ÑÓÃx£¨ÍòÔª£©ÓëÏúÊÛ¶îy£¨ÍòÔª£©µÄͳ¼ÆÊý¾ÝÈç±í£º
¹ã¸æ·ÑÓÃx£¨ÍòÔª£©23456
ÏúÊÛ¶îy£¨ÍòÔª£©2941505971
¸ù¾ÝÉϱí¿ÉµÃ»Ø¹é·½³Ì$\hat y=\hat bx+\hat a$ÖÐ$\hat b$µÄΪ10.2£¬¾Ý´ËÄ£ÐÍÔ¤²â¹ã¸æ·ÑÓÃΪ10ÍòԪʱ£¬ÏúÊÛ¶îΪ£¨¡¡¡¡£©ÍòÔª£®
A£®101.2B£®108.8C£®111.2D£®118.2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔËÐÐÈçϳÌÐò¿òͼ£¬·Ö±ðÊäÈët=45£¬t=-$\frac{172}{3}$£¬ÔòÊä³ösµÄºÍΪ£¨¡¡¡¡£©
A£®-2017B£®2017C£®-2016D£®2016

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®É躯Êýf£¨x£©=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c£¬Èôf£¨x£©ÓÐÁ½¸ö¼«Öµµã¦Á¡¢¦Â£¬ÇÒ0£¼¦Á£¼1£¼¦Â£¼2£¬Ôò$\frac{a^2}{4}+{b^2}$µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨\frac{1}{4}£¬\frac{13}{4}£©$B£®$£¨\frac{1}{4}£¬1£©$C£®$£¨1£¬\frac{9}{4}£©$D£®$£¨\frac{9}{4}£¬\frac{13}{4}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÓÐÒ»»Ø¹é·½³ÌΪ$\hat y$=2-5x£¬µ±xÔö¼ÓÒ»¸öµ¥Î»Ê±£¨¡¡¡¡£©
A£®yƽ¾ùÔö¼Ó2¸öµ¥Î»B£®yƽ¾ùÔö¼Ó5¸öµ¥Î»
C£®yƽ¾ù¼õÉÙ2¸öµ¥Î»D£®yƽ¾ù¼õÉÙ5¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©ÒÑÖª£ºx¡Ê£¨0+¡Þ£©£¬ÇóÖ¤£º$ln£¨\frac{1}{x}+1£©£¾\frac{1}{x+1}$£»
£¨2£©ÒÑÖª£ºn¡ÊNÇÒn¡Ý2£¬ÇóÖ¤£º$lnn£¾\frac{1}{2}+\frac{1}{3}+¡­+\frac{1}{n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÉèµãOÎª×ø±êÔ­µã£¬ÍÖÔ²$E£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ¶¥µãΪA£¬É϶¥µãΪB£¬¹ýµãOÇÒбÂÊΪ$\frac{1}{6}$µÄÖ±ÏßÓëÖ±ÏßABÏཻM£¬ÇÒ$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{BM}$£®
£¨¢ñ£©ÇóÖ¤£ºa=2b£»
£¨¢ò£©PQÊÇÔ²C£º£¨x-2£©2+£¨y-1£©2=5µÄÒ»ÌõÖ±¾¶£¬ÈôÍÖÔ²E¾­¹ýP£¬QÁ½µã£¬ÇóÍÖÔ²EµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{mx}{{x}^{2}+n}$£¨m£¬n¡ÊR£©ÔÚx=1´¦È¡µÃ¼«Öµ2£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©kΪºÎֵʱ£¬·½³Ìf£¨x£©-k=0Ö»ÓÐ1¸ö¸ù
£¨3£©É躯Êýg£¨x£©=x2-2ax+a£¬Èô¶ÔÓÚÈÎÒâx1¡ÊR£¬×Ü´æÔÚx2¡Ê[-1£¬0]£¬Ê¹µÃg£¨x2£©¡Üf£¨x1£©£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸