精英家教网 > 高中数学 > 题目详情
16.已知m、n是不重合直线,α、β、γ是不重合平面,则下列命题
①若α⊥γ、β⊥γ则α∥β;
②若m?α、n?α、m∥β、n∥β则α∥β;
③若α∥β、γ∥β则γ∥α;
④若α⊥β、m⊥β则m∥α;
⑤m⊥α、n⊥α则m∥n中,
真命题个数是(  )
A.0个B.1个C.2个D.3个

分析 根据空间直线和平面,平面和平面平行和垂直的判定定理和性质定理分别进行判断即可.

解答 解:①垂直同一平面的两个平面不一定平行,故①错误,
②若m?α、n?α、m∥β、n∥β,则当m,n相交时α∥β,当m,n不相交是,α∥β不成立,故②错误,;
③若α∥β、γ∥β,则γ∥α成立,故③正确;
④若α⊥β、m⊥β,则m∥α或m?α;故④错误;
⑤根据垂直于同一平面的两条直线平行可得若m⊥α、n⊥α,则m∥n成立,故⑤正确.
故真命题有2个,
故选:C

点评 本题主要考查与空间直线和平面位置关系的判断,根据相应的判定定理和性质定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C的方程为x2=2py(p>0),焦点F,点A(-1,1),B(-2,1),满足$\overrightarrow{FA}$=$λ\overrightarrow{FB}$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点A作斜率为正的直线交抛物线C于不同于B的两点M,N,若直线BM,BN分别交直线l:x+2y+1=0于P,Q两点,求|PQ|最小时直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,抛物线C1:x2=2py(p>0)与椭圆C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个交点为T($\frac{4}{3}$,$\frac{1}{3}$),F(1,0)为椭圆C2的右焦点.
(1)求抛物线C1与椭圆C2的方程;
(2)设M(x0,y0)是抛物线C1上任意一点,过M作抛物线C1的切线l,直线l与椭圆C2,交于A、B两点,定点N(0,$\frac{2}{3}$),求△NBA的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某中学高三文科班从甲、乙两个班各选出7名学生参加文史知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x+y的值为(  )
A.8B.7C.9D.168

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{2}$+y2=1,过点P(1,0)作直线l,使l交椭圆于A,B两点,且交y轴于Q点,若|AQ|=|BP|.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两人进行五局三胜制羽毛球比赛,除第五局两人获胜的机会相等,其余各局甲获胜的概率都是$\frac{2}{3}$,记X为比赛的局数,每局比赛结果相互独立.
(1)试求甲3:0获胜的概率;
(2)求X的分布列及数学期望值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.?ABCD的一组邻边所在直线的方程分别为x+y+1=0与3x-y+3=0,对角线AC,BD的交点坐标为(2,1),求另外两边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若x∈R,那么$\frac{x}{x+1}$是正数的充要条件是(  )
A.x>0B.x<-1C.x>0或x<-1D.-1<x<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当n≥3,n∈N时,对于集合M={1,2,3,…,n},集合M的所有含3个元素的子集分别表示为N1,N2,N3,…NM(n)-1,NM(n),其中M(n)表示集合M的含3个元素的子集的个数.设pi为集合Ni中的最大元素,qi为集合Ni中的最小元素,1≤i≤M(n),记P=p1+p2+…+pM(n)-1+pM(n),Q=q1+q2+…qM(n)-1+qM(n)
(1)当n=4时,分别求M(4),P,Q;
(2)求证:P=3Q.

查看答案和解析>>

同步练习册答案