精英家教网 > 高中数学 > 题目详情
10.求和:S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2015π}{3}$=0.

分析 sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin2π=0,$sin(2nπ+\frac{kπ}{3})$=$sin\frac{kπ}{3}$(n,k∈N*,k=1,2,…,6),即可得出.

解答 解:∵sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin2π=$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$+0-$\frac{\sqrt{3}}{2}$$-\frac{\sqrt{3}}{2}$+0=0,
$sin(2nπ+\frac{kπ}{3})$=$sin\frac{kπ}{3}$(n,k∈N*,k=1,2,…,6).
2015=6×335+5.
∴S=335×0+sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{5}{3}$π=0,
故答案为:0.

点评 本题考查了数列与三角函数的周期性、求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.sinα+cosα=$\frac{\sqrt{5}}{2}$,α∈(0,π),求
(1)cos2α
(2)tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l过点P(4,1),且在x轴与y轴上的截距分别为a,b.
(1)若a>0,b>0,求ab取得最小值时的直线l的方程;
(2)若a>0,b>0,求a+b取得最小值时的直线l的方程;
(3)求点P到直线(2m-1)x+(m+3)y+(11-m)=0的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,己知a=bcosC+csinB,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知sinx=2cosx,则$\frac{5sinx-cosx}{2sinx+cosx}$=(  )
A.$\frac{6}{5}$B.$\frac{9}{5}$C.$\frac{8}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于给定的函数f(x),定义fn(x)如下:fn(x)=$\sum_{k=0}^{n}$C${\;}_{n}^{k}$f($\frac{k}{n}$)xk(1-x)n-k,其中n≥2,n∈N*
(1)当f(x)=1时,求证:fn(x)=1;
(2)当f(x)=x时,比较f2014(2013)与f2013(2014)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{6}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为营造良好生活环境,上海政府致力于城市绿化,据统计从2000年以来城市的绿化面积每两年均按5%的比例增长,已知2008年底全是绿化积为1430平方公里,若保持这种增长势头,到2016年底上海市的绿化总面积将达到1738.2平方公里(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{1}{3}{x^3}-a{x^2}-3{a^2}$x+1(a>0)
(1)求f′(x)的表达式
(2)求f(x)的单调区间、极大值和极小值.

查看答案和解析>>

同步练习册答案