精英家教网 > 高中数学 > 题目详情
11.将函数y=cos(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,得到函数y=f(x)的图象,则下列说法正确的是(  )
A.f(x)是偶函数B.f(x)周期为$\frac{π}{2}$
C.f(x)图象关于x=$\frac{π}{6}$对称D.f(x)图象关于(-$\frac{π}{6}$,0)对称

分析 由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,得出结论.

解答 解:将函数y=cos(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,
得到函数y=f(x)=cos[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]=cos(2x+$\frac{2π}{3}$)的图象,
故f(x)不是偶函数,且它的周期$\frac{2π}{2}$=π,故排除A、B;
当x=$\frac{π}{6}$时,f(x)=cosπ=-1,为最小值,故f(x)图象关于x=$\frac{π}{6}$对称,故C正确;
当x=-$\frac{π}{6}$时,求得f(x)=cos$\frac{π}{3}$=$\frac{1}{2}$,f(x)图象不关于(-$\frac{π}{6}$,0)对称,故排除D,
故选:C.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数对(x,y),设映射f:(x,y)→($\frac{x+y}{2}$,$\frac{x-y}{2}$),并定义|(x,y)|=$\sqrt{{x}^{2}{+y}^{2}}$,若|f[f(f(x,y))]|=8,则|(x,y)|的值为(  )
A.4$\sqrt{2}$B.8$\sqrt{2}$C.16$\sqrt{2}$D.32$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+3x,x<0\\ ln(x+1),x≥0\end{array}\right.$,若|f(x)|≥ax,则a的取值范围是(  )
A.(-∞,0]B.(-∞,1]C.[-3,0]D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若纯虚数z满足iz=1+ai,则实数a=(  )
A.0B.-1或1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知递增的等差数列{an}的公差为d,又a2,a3,a4,a5,a6这5个数列的方差为3,则d=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=log($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{2}^{x}-1}$+1,则f(1)+f(-1)=1;如果f(loga5)=4(a>0,a≠1),那么f(${log}_{\frac{1}{a}}$5)的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,则输出的S为(  )
A.2B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=3sin(2x-\frac{π}{3}+ϕ),ϕ∈(0,π)$满足f(|x|)=f(x),则ϕ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,若点F关于双曲线的渐近线的对称点在双曲线的右支上,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案