精英家教网 > 高中数学 > 题目详情
12.一个袋内装有大小相同的6个白球和5个黑球,从中随意抽取2个球,抽到白球、黑球各1个的概率为(  )
A.$\frac{6}{11}$B.$\frac{1}{5}$C.$\frac{2}{11}$D.$\frac{1}{10}$

分析 由题意知从11个球中摸出2个,共有C112=55个基本事件,从中随意抽取2个球,抽到白球、黑球各1个的,共有C61C51=30个基本事件,根据概率公式计算即可.

解答 解:由题意知从11个球中摸出2个,共有C112=55个基本事件,从中随意抽取2个球,抽到白球、黑球各1个的,共有C61C51=30个基本事件,
∴满足条件的事件概率P=$\frac{30}{55}$=$\frac{6}{11}$,
故选:A.

点评 本题考查等可能事件的概率,本题解题的关键是做出满足条件的事件数,这里借助于组合数来表示,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某军区新兵50m步枪射击个人平均成绩x(单位:环)服从正态分布N(μ,o2),从这些个人平均成绩中随机抽取100个,得到如下频数分布表:
x456789
频数122640292
(Ⅰ)求μ和o2的值(用样本数学期望、方差代替总体数学期望、方差);
(Ⅱ)如果这个军区有新兵10000名,试估计这个军区新兵50m步枪射击个人平均成绩在区间(7.9,8.8]上的人数[参考数据:$\sqrt{0.8}$=0.9,若ξ:N(μ,o2),则P(μ-o-<ξ≤μ+o-)=0.6826,P(μ-2o-<ξ≤μ+2o-)=0.9544,P(μ-3o-<ξ≤μ+3o-=0.9974].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-1,0,1,2},集合B={x∈R|x2=1},则A∩B=(  )
A.{1}B.{-1,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.现有甲、乙、丙三个儿童玩石头、剪刀、布的猜拳游戏,观察其出拳情况.
(1)写出该试验的所有基本事件;
(2)事件“三人不分胜负”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,平面内z1,z2对应的向量分别是$\overrightarrow{OA}$,$\overrightarrow{OB}$,则|z1+z2|=(  )
A.2B.3C.2 $\sqrt{2}$D.3 $\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为调查我校学生的用电情况,学校后勤部门组织抽取了100间学生宿舍某月用电量调查,发现每间宿舍用电量都在50度到350度之间,其频率分布直方图如图所示.
(1)为降低能源损耗,节约用电,学校规定:每间宿舍每月用电量不超过200度时,按每度0.5元收取费用;超过200度,超过部分按每度1元收取费用.以t表示某宿舍的用电量(单位:度),以y表示该宿舍的用电费用(单位:元),求y与t的函数关系式?
(2)求图中月用电量在(200,250]度的宿舍有多少间?
(3)在直方图中,以各组的区间中点值代表该组的各个值,宿舍用电量落入该区间的频率作为宿舍用电量取该区间中点值的频率(例如:若t∈[150,200),则取t=175,且t=175发生的频率等于落入[150,200)的频率),试估计我校学生宿舍的月均用电费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|0<x<3},N={x|log2x>1},则M∩N=(  )
A.B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=x3-bx2在[1,+∞)上是增函数,则实数b的取值范围是(-∞,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cos(π-α)=-$\frac{5}{13}$且α是第四象限角,则sinα=(  )
A.$\frac{5}{13}$B.$\frac{12}{13}$C.±$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

同步练习册答案