精英家教网 > 高中数学 > 题目详情
19.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名参加志愿者活动,设X表示所抽取的2名同学中得分在[80,90)内的学生人数,求事件“X=2”的概率.

分析 (1)根据频率分布直方图的性质求得样本容量n和频率分布直方图中x、y的值.
(2)由题意可知,分数在[80,90)有4人,分别记为a,b,c,d,分数在[90,100)有2人,分别记为A,B,用列举法求得所有的抽法有15种,而满足条件的抽法有6种,由此求得所求事件的概率.

解答 解:(1)由题意可知,样本容量n=$\frac{8}{0.02×10}$=40,y=$\frac{2}{40}$×$\frac{1}{10}$=0.005,
x=0.1-(0.02-0.04-0.01-0.005)=0.025.
(2)由题意可知,分数在[80,90)有4人,分别记为a,b,c,d,
分数在[90,100)有2人,分别记为A,B.
从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学有如下种情形:(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),共有15个基本事件;
其中符合所抽取的2名同学中得分在[80,90)内的学生人数的基本事件有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6个,
所以事件“X=2”的概率为P(X=2)=$\frac{6}{15}$=$\frac{2}{5}$.

点评 本题主要考查等可能事件的概率,频率分布直方图的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$$+λ\overrightarrow{{e}_{2}}$(λ∈R),且|$\overrightarrow{a}$|=$\frac{\sqrt{3}}{2}$,则λ=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$-1C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在三棱锥P-ABC中,$AB=BC=2\sqrt{3}$,平面PAC⊥平面ABC,PD⊥AC于点D,AD=2,CD=4,PD=3.
(1)求三棱锥P-ABC的体积;
(2)证明:△PBC为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知过双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1左焦点F1的弦AB长为6,求△ABF2(F2为右焦点)的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=cosx•sin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4},x∈R$.
(Ⅰ)求f(x)的最大值;
(Ⅱ)求f(x)的图象在y轴右侧第二个最高点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.老师为哈六中某位同学的高考成绩x设计了一个程序框图,执行如图所示的程序,若输出的数码为3112,则这位同学的高考分数x是(  )
A.682B.683C.692D.693

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=\left\{\begin{array}{l}x,0≤x<1\\ \frac{1}{{f({x+1})}}-1,-1<x<0\end{array}\right.$,g(x)=f(x)-4mx-m,其中m≠0.若函数g(x)在区间(-1,1)上有且仅有一个零点,则实数m的取值范围是(  )
A.$m≥\frac{1}{4}$或m=-1B.$m≥\frac{1}{4}$C.$m≥\frac{1}{5}$或m=-1D.$m≥\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆的方程为x2+y2-2x-8=0,设该圆过点(2,1)的最长弦和最短弦分别为AC和BD,
(1)求出|AC|和|BD|
(2)求出四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{a_n^2-1}$(n∈N+),数列{bn}的前n项和Tn,求T2016

查看答案和解析>>

同步练习册答案