精英家教网 > 高中数学 > 题目详情
10.已知集合A={2a,a2-a},则a的取值范围是{a|a≠0且a≠3}.

分析 根据集合元素的互异性,进行求解范围

解答 解:根据集合元素的互异性可知,a2-a≠2a,即a≠0且a≠3.
所以a的取值范围{a|a≠0且a≠3}.
故答案为:{a|a≠0且a≠3}.

点评 本题主要考查元素的互异性的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,?ABCD中,M、N分别是边DC、BC的中点.
(1)求证:MN∥$\frac{1}{2}$DB,MN=$\frac{1}{2}$DB;
(2)设$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=b,且$\overrightarrow{MN}$=$x\overrightarrow{a}+y\overrightarrow{b}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知复数z=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则$\overline{z}$+|z|=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对?a,b∈R,记min{a,b}=$\left\{\begin{array}{l}{a,(a<b)}\\{b(a≥b)}\end{array}\right.$,则函数f(x)=min{|x+1|,|x-1|}(x∈R)的单调增区间为(  )
A.[0,+∞)B.(-∞,0]C.(-∞,-1]和[0,1]D.[-1,0]和[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.现有n个正方体,它们的棱长可以构成首项为1,公比为2的等比数列,则这n个正方体的体积之和为$\frac{{8}^{n}-1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},且函数y=ax3+mx2+x+$\frac{c}{2}$在区间($\frac{1}{2}$,1)上不是单调函数,则实数m的取值范围是(  )
A.(-2,-$\sqrt{3}$)B.(-∞,-2)∪($\sqrt{3}$,+∞)C.[-3,-$\sqrt{3}$]D.(-∞,-2)∪(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若lnx<x2+$\frac{a}{x}$在(1,+∞)上恒成立,则a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数x2-1+(x+1)i是纯虚数(i是虚数单位,x∈R),则x=(  )
A.1B.-1C.±1D.0

查看答案和解析>>

同步练习册答案