分析 在$\frac{x^2}{4}+\frac{y^2}{2}=1$上,设点A(x,y)(xy≠0)由题可得四边形ABCD的面积为4|xy|,利用基本不等式的性质即可得出|xy|的最大值.
解答 解:在$\frac{x^2}{4}+\frac{y^2}{2}=1$上,设点A(x,y)(xy≠0)由题可得四边形ABCD的面积为4|xy|,
由$\frac{x^2}{4}+\frac{y^2}{2}=1≥2\sqrt{\frac{{{{(xy)}^2}}}{8}}$,
当且仅当$\frac{x^2}{4}=\frac{y^2}{2}$时即$x=±\sqrt{2},y=±1$取等号,
∴|xy|最大值为$\sqrt{2}$,即四边形ABCD的面积最大值为4$\sqrt{2}$.
点评 本题考查了椭圆的标准方程及其性质、基本不等式的性质、矩形的面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com