| A. | y=$\frac{3}{2}$x-$\frac{1}{2}$ | B. | y=2x-1 | C. | y=2x+1 | D. | y=$\frac{1}{2}$x+$\frac{1}{2}$ |
分析 求切点A的坐标及过切点A的切线方程,先求切点A的坐标,设点A的坐标为(a,a2),只须在切点处的切线方程,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率从而得到切线的方程进而求得面积的表达式.最后建立关于a的方程解之即得.最后求出其斜率的值即可,即导数值即可求出切线的斜率.从而问题解决.
解答
解:如图所示,设切点A(x0,y0),
由y′=2x,得过点A的切线方程为:
y-y0=2x0(x-x0),即y=2x0x-x02.
令y=0,得x=$\frac{{x}_{0}}{2}$,即C($\frac{{x}_{0}}{2}$,0).
设由曲线和过A点的切线及x轴所围成图形的面积为S.
S曲边三角形AOB=${∫}_{0}^{{x}_{0}}$x2dx=$\frac{1}{3}$x3|${\;}_{0}^{{x}_{0}}$=${{x}_{0}}^{3}$,
S△ABC=$\frac{1}{2}$|BC|•|AB|=$\frac{1}{2}$(x0-$\frac{{x}_{0}}{2}$)•x02=$\frac{1}{4}$${{x}_{0}}^{3}$.
∴S=$\frac{1}{3}$${{x}_{0}}^{3}$-${{\frac{1}{4}x}_{0}3}^{\;}$=$\frac{1}{12}$${{x}_{0}}^{3}$.
由$\frac{1}{12}{{x}_{0}}^{3}$=$\frac{1}{12}$得x0=1,
从而切点A的坐标为(1,1),
切线方程为y=2x-1.
故选B.
点评 本题主要考查了导数的几何意义及定积分的简单应用,在用定积分求面积时注意被积函数的确定.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2个 | B. | 4个 | C. | 8个 | D. | 无穷多个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com