精英家教网 > 高中数学 > 题目详情
1.某几何体的三视图及尺寸如图所示,则该几何体的外接球半径为$\frac{17}{4}$.

分析 由三视图可知几何体是一个正四棱锥的一半:底面是一个两直角边都为6的直角三角形,高为4.设其外接球的球心O必在高线EF上,利用几何体和外接球的半径建立方程,据此方程可求出答案.

解答 解:由三视图可知:该几何体是一个如图所示的三棱锥(图中红色部分),它是一个正四棱锥的一半,
其中底面是一个两直角边都为6的直角三角形,高EF=4.
设其外接球的球心为O,O点必在高线EF上,外接球半径为R,
则在直角三角形AOF中,AO2=OF2+AF2=(EF-EO)2+AF2
即R2=(4-R)2+(3$\sqrt{2}$)2
解得,R=$\frac{17}{4}$,
故答案为:$\frac{17}{4}$.

点评 本题考查由三视图还原实物图.考查多面体外接球的半径,考查空间想象力.这是一个综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图四面体P-ABC中,PA=PB=$\sqrt{13}$,平面PAB⊥平面ABC,∠ABC=90°AC=8,BC=6,则PC=7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中,棱长为a.
(1)求证:体对角线BD1⊥面A1DC1
(2)求点A到面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求证:AB1⊥CC1
(2)若AB1=$\sqrt{6}$,求四棱锥A-BB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正方体ABCD-A′B′C′D′中,二面角A′-BC-A的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在曲线y=x2(x≥0)上某一点A处作一条切线使之与曲线以及x轴围成的面积为$\frac{1}{12}$,则以A为切点的切线方程为
(  )
A.y=$\frac{3}{2}$x-$\frac{1}{2}$B.y=2x-1C.y=2x+1D.y=$\frac{1}{2}$x+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知sin(A+B)=sinB+sin(A-B).
(1)求∠A;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=20,求|$\overrightarrow{BC}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,且2bcosB=acosC+ccosA.
(1)求角B的大小;
(2)求2sin2A+cos(A-C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距为2,一个顶点与两个焦点组成一个等边三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)椭圆C的右焦点为F,过F点的两条互相垂直的直线l1,l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于T点.
(i)求证:线段PQ的中点在直线OT上;
(ii)求$\frac{{|{TF}|}}{{|{PQ}|}}$的取值范围.

查看答案和解析>>

同步练习册答案