精英家教网 > 高中数学 > 题目详情
已知x为实数,条件p:x2<x,条件q:
1
x
>2,则p是q的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质,结合充分条件和必要条件的定义即可得到结论.
解答: 解:由x2<x得0<x<1.由
1
x
>2,得0<x<
1
2

所以p是q的必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点M的直角坐标(-
3
,1)化为极坐标是(  )
A、(2,
π
6
B、(2,
6
C、(2,
6
D、(2,-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
m
-
y2
n
=1(m>0,n>0)上的点P(
5
,-
3
)作圆x2+y2=m的切线,切点为A,B,若
PA
PB
=0,则该双曲线的离心率的值为(  )
A、2
B、3
C、4
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示程序框图,输出的结果是(  )
A、a,b中较大的值B、a,b两个值

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的个数是(  )
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量
a
b
的夹角是钝角”的充分必要条件是“
a
b
<0”.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

因为无理数是无限小数,而π是无理数,所以π是无限小数.属于哪种推理(  )
A、合情推理B、类比推理
C、演绎推理D、归纳推理

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-x+1在x=1处的切线方程是(  )
A、y=1B、y=x
C、y=2x-1D、y=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2c,且a2=c(c+a),F,A分别是它的左焦点和右顶点,B是短轴的一个端点,则∠ABF等于(  )
A、60°B、75°
C、90°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx.
(1)讨论f(x)的单调性;
(2)当a=-1时,过坐标原点O作曲线y=f(x)的切线,设切点为P(m,n),求实数m的值;
(3)设定义在区间D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若
g(x)-h(x)
x-x0
>0在区间D内恒成立,则称点P为函数y=g(x)的“转点”.当a=8时,试问:函数y=f(x)是否存在“转点”?若存在,请求出“转点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案