精英家教网 > 高中数学 > 题目详情
17.已知f(x-1)=x2-4x.
(1)求f(x)的解析式;
(2)解方程f(x+1)=0.

分析 (1)变形可得f(x-1)=(x-1)2-2(x-1)-3,可得f(x)的解析式为f(x)=x2-2x-3;
(2)方程f(x+1)=0可化为(x+1)2-2(x+1)-3=0,解一元二次方程可得.

解答 解:(1)变形可得f(x-1)=(x-1)2-2(x-1)-3,
∴f(x)的解析式为f(x)=x2-2x-3;
(2)方程f(x+1)=0可化为(x+1)2-2(x+1)-3=0,
化简可得x2-4=0,解得x=2或x=-2

点评 本题考查函数解析式的求解方法,配凑是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R),若圆的圆心一定在直线l上,则 l的方程为x-3y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.记函数y=ln(4-x)的定义域为P,不等式2x(x-a)<1的解集为Q.
(1)若a=3,求Q;
(2)若Q⊆P,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设M={x|y=$\sqrt{3-{x}^{2}}$},N={y|y=x2+1,x∈R},则M∩N=[1,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=a-$\sqrt{x}$在[m,n]值域也为[m,n],试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(α)=$\frac{sin(π-α)cos(-α+2π)cos(-α+\frac{3π}{2})}{sin(\frac{π}{2}+α)sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,tan(α+π)=$\frac{3}{4}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),$\overrightarrow{c}$=(-1,0).
(Ⅰ)若$\overrightarrow{a}+\overrightarrow{c}$与$\overrightarrow{b}-\overrightarrow{c}$垂直,x∈[0,2π],求x的值;
(Ⅱ)设f(x)=$\overrightarrow{a}•\overrightarrow{b}$,求f(x)的最小正周期和f(x)在[-$\frac{π}{8}$,$\frac{π}{4}$]上的最大值与最小值;
(Ⅲ)若$\overrightarrow{b}$在$\overrightarrow{a}$上的投影不超过1,x∈[0,2π],求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|-3≤x≤6},B={x|m+2≤x≤2m},且满足A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=2px(p>0)的顶点作互相垂直的两条直线分别交抛物线于A、B两点.
(1)求证:直线AB恒过定点;
(2)过原点O作0H垂直于AB,H为垂足,求点H的轨迹方程.

查看答案和解析>>

同步练习册答案