| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | a<c<b |
分析 先确定函数的自变量的范围和大小关系,再根据导数的符号确定函数的单调性,进一步进行判定函数值的大小即可.
解答 解:∵-2<${log}_{\frac{1}{3}}^{3}$=-1<0<${(\frac{1}{3})}^{0.3}$<1<ln3
而(x+2)f′(x)<0,若x+2>0时,则f′(x)<0
所以函数f(x)在(-2,+∞)上是单调减函数,
∴f(ln3)<f(${(\frac{1}{3})}^{0.3}$)<f(${log}_{\frac{1}{3}}^{3}$),
∴c<b<a,
故选:B.
点评 本题主要考查了函数的单调性与导数的关系、对数值大小的比较等基础知识,考查运算求解能力.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | AB∥CD | B. | AC⊥BD | C. | BD⊥平面ABC | D. | VD-ABC=$\frac{{a}^{3}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com