精英家教网 > 高中数学 > 题目详情
1.已知sinθ=$\frac{4}{5}$,$\frac{π}{2}$<θ<π.
(1)求tanθ;
(2)求$\frac{2sinθ+cosθ}{sinθ-2cosθ}$的值.

分析 (1)由sinθ的值及θ的范围,利用同角三角函数间的基本关系求出cosθ的值,即可确定出tanθ的值;
(2)原式分子分母除以cosθ,利用同角三角函数基本关系变形,将tanθ的值代入计算即可求出值.

解答 解:(1)∵sinθ=$\frac{4}{5}$,$\frac{π}{2}$<θ<π,
∴cosθ=-$\sqrt{1-si{n}^{2}θ}$=-$\frac{3}{5}$,
则tanθ=-$\frac{4}{3}$;
(2)∵tanθ=-$\frac{4}{3}$,
∴原式=$\frac{2tanθ+1}{tanθ-2}$=$\frac{2×(-\frac{4}{3})+1}{-\frac{4}{3}-2}$=$\frac{1}{2}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数f(x)满足(x+2)f′(x)<0,设$a=f({log_{\frac{1}{3}}}3),b=f[{(\frac{1}{3})^{0.3}}]$,c=f(ln3),则a,b,c的大小关系为(  )
A.a<b<cB.c<b<aC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)表示的是数位为x的“成功数“的数目,成功数的定义为:数位之和相加为5的正整数.如满足f(1)的只有5,则f(1)=1,满足f(2)的有14,41,23,32,50 则f(2)=5 求:
(1)推导出f(x)的解析式;
(2)在f(1),f(2),f(3)…f(2014)中有多少个的个位数字是1?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2lnx
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,方程f(x)-t=0关于x在(1,+∞)上有唯一解s,使t=f(s);
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有$\frac{2}{5}$<$\frac{lng(t)}{lnt}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线y=$\frac{1}{e}$x+b(e是自然对数的底数)是曲线y=lnx的一条切线,则实数b的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,AD=DC=$\frac{1}{2}$AB=1,PA⊥平面ABCD,异面直线AC与PB所成角的余弦值为$\frac{\sqrt{10}}{5}$,M为PB的中点,G为△AMC的重心.
(1)求证:BC⊥平面PAC;
(2)求DG与平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)(x∈R)是奇函数,当x>0时,f(x)=log${\;}_{\frac{1}{2}}$(2x+1),则满足不等式f(log3(x+2))+f(2)>0的x的取值范围是(-2,-$\frac{17}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a是f(x)=sinx-xcosx在x∈(0,2π)的一个零点,则下列结论中正确的有①②③.
①$a∈(π,\frac{3π}{2})$;                     
②$?x∈(0,2π),cosa≤\frac{sinx}{x}$;
③?x∈(0,π),x-a<cosx-cosa;   
④?x∈(0,2π),asinx<xsina.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\frac{2i}{2-i}$.

查看答案和解析>>

同步练习册答案