精英家教网 > 高中数学 > 题目详情

如图,在多面体ABCDE中,∠ABC=90°,∠ACB=30°,四边形为等腰梯形,∠EAC=∠DCA=45°,AC=2ED=4,平面BCD丄平面ABE.
(I )求证:AB丄平面BCD;
(II )试求二面角C-BD-E的大小.

(I )证明:延长AE与CD交于F,
∵四边形为等腰梯形,∠EAC=∠DCA=45°,
∴△ACF为等腰直角三角形
在平面BCF内过C作CG⊥BF于G,∵平面BCD丄平面ABE,∴CG⊥平面ABF
∵AB?平面ABF,∴CG⊥AB
∵AB⊥BC,BC∩CG=C
∴AB丄平面BCD;
(II )解:设H为BF的中点,则EH∥AB,∴EH⊥平面BCF
过H作HP⊥BD于P,则EP⊥BD,∴∠HPE为二面角的平面角的补角

∵EH=1,HP=
∴EP=
∴cos∠HPE=
∴∠HPE=60°
∴二面角C-BD-E的大小为120°.
分析:(I )延长AE与CD交于F,则△ACF为等腰直角三角形,在平面BCF内过C作CG⊥BF于G,可得CG⊥平面ABF,从而可得CG⊥AB,又AB⊥BC,利用线面垂直的判定,可证AB丄平面BCD;
(II )设H为BF的中点,过H作HP⊥BD于P,则可得∠HPE为二面角的平面角的补角,由此可求二面角C-BD-E的大小.
点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定方法,正确作出面面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案