| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 作出函数f(x)的大致图象,分析关于f(x)这一整体的二次方程根的情况,依据根的情况分类讨论.
解答
解:∵函数f(x)=(2x2-x-1)ex,∴f′(x)=(2x-1)(x+2)ex,
且f(-2)=$\frac{9}{{e}^{2}}$,f($\frac{1}{2}$)=-$\sqrt{e}$,
f(x)的大致图象如图,
令t=f(x),
设方程e[f(x)]2+tf(x)-9$\sqrt{e}$=0的两根为m1,m2,
则m1m2=-$\frac{9\sqrt{e}}{e}$=f(-2)f($\frac{1}{2}$),
若m1=$\frac{9}{{e}^{2}}$,m2=-$\sqrt{e}$,有三根;
若0<m1<$\frac{9}{{e}^{2}}$有三根,此时m2<-$\sqrt{e}$无根,也有三根,
当m1>$\frac{9}{{e}^{2}}$有1根,此时-$\sqrt{e}$<m2<0有两根,也有三根,
故选:B.
点评 考查利用导函数分析出的单调性、极值作简图,考查复合函数的零点问题.利用换元法简化方程,考查数形结合.作图、分析根个数,难度较大,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 非奇非偶函数 | |
| B. | 既不是奇函数,又不是偶函数奇函数 | |
| C. | 偶函数 | |
| D. | 奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 科幻片 | 文艺片 | 总计 | |
| 男 | |||
| 女 | |||
| 总计 |
| P(K2≥k0) | … | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
| K0 | … | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com