精英家教网 > 高中数学 > 题目详情
若椭圆C1
x2
a12
+
y2
b12
=1(a1>b1>0)和椭圆C2
x2
a22
+
y2
b22
=1(a2>b2>0)的离心率相同,且a1>a2,给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;②
a1
a2
=
b1
b2
;③a12-a22<b12-b22;④a1-a2<b1-b2
则所有结论正确的序号是
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:首先根据离心率相等可以进行恒等变换得到:②成立,同时得到a12-b12=a22-b22③不成立,①成立,最后利用(a1+b1)(a1-b1)=(a2+b2)(a2-b2)得到④成立.
解答: 解:椭圆C1
x2
a12
+
y2
b12
=1(a1>b1>0)和椭圆C2
x2
a22
+
y2
b22
=1(a2>b2>0)的离心率相同,
所以:a12-b12=a22-b22
进一步转化为:a12-a22=b12-b22
由于a1>a2所以b1>b2
所以:①成立,
c1
a1
=
c2
a2

经过变换和合比性质得到:
a1
a2
=
b1
b2

所以:②成立.
a12-b12=a22-b22,所以:(a1+b1)(a1-b1)=(a2+b2)(a2-b2),
进一步得到:a1-a2<b1-b2,故④成立.
故答案为:①②④.
点评:本题考查的知识点:椭圆的性质的应用,不等式的应用,合比性质的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),满足f(x+2)=-f(x),若f(2)=-lg2,f(3)=lg5则f(2014)-f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
21-x,x≤1
1-log2x,x>1
,则f[f(4)]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|-7<x<3},集合B={x|1<x<7},则A∪B=(  )
A、{x|-7<x<7}
B、{x|1<x<7}
C、{x|-7<x<3}
D、{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是x轴上的两点,点p的横坐标为3,且|PA|=|PB|,若直线PA的方程为x-2y+1=0,则直线PB的方程是(  )
A、2x+y+4=0
B、2x+y-7=0
C、x-2y+4=0
D、x+2y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知AB=
5
6
2
,B=45°,C=60°.
(1)求AC的长;
(2)延长BC到D,使CD=3,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为正三角形,且E,F分别为AD,AB的中点,PE⊥平面ABCD,BE⊥平面PAD.
(Ⅰ)求证:BC⊥平面PEB;
(Ⅱ)求EF与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,直线l过点(0,1).
(1)若k=4,求抛物线到直线l距离最近的点的坐标;
(2)若直线l与抛物线C相交于A、B两点,且OA⊥OB,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=a2x-2(a>0,a≠1)的图象恒过点A,若直线l:mx+ny-1=0经过点A,则坐标原点O到直线l的距离的最大值为
 

查看答案和解析>>

同步练习册答案