精英家教网 > 高中数学 > 题目详情
3.若$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{y≤1}\end{array}\right.$,则z=x+2y的最大值是3.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{y≤1}\end{array}\right.$作出可行域如图,

化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过A(1,1)时,直线在y轴上的截距最大,z有最大值为3.
故答案为:3.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x(x2-3a),求f(x)在[0,1]上的最大值F(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=x2-3x的定义域是{0,1,3},则该函数的值域为{0,-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若不等式x2-logmx<0在(0,$\frac{1}{3}$)内恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域:
(1)y=3${\;}^{\frac{1}{2x+1}}$;
(2)y=$\sqrt{1-(\frac{2}{3})^{x}}$;
(3)y=$\frac{1}{\sqrt{{a}^{x}-2}}$(a>0,a≠1);
(4)y=log2$\frac{1}{3x-2}$;
(5)y=$\sqrt{2lo{g}_{2}x-5}$;
(6)y=log2$\frac{1}{1-{3}^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知U=R,A={x|1≤x≤3},B={x|a-1≤x≤2a-3},若(∁UA)⊆(∁UB),则实数a的取值范围为(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+(x-1)|x-a|
(1)若a=0,解不等式f(x)<0;
(2)若不等式f(x)≥2x-3对一切实数x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各区间的数轴表示中,正确的是(  )
A.
[-2,+∞)
B.
(-∞,2)
C.
(-1,2)
D.
[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用符号“=”或“?”或“?”填空.
{1}?N*,{0}?∅,{-1,1}={x|x2-1=0},Q?Z.

查看答案和解析>>

同步练习册答案