精英家教网 > 高中数学 > 题目详情

对于三次函数,定义的导函数的导函数,若方程有实数解x0,则称点为函数的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:

①任意三次函数都关于点对称:

②存在三次函数有实数解,点的对称中心;

③存在三次函数有两个及两个以上的对称中心;

④若函数则,.

其中正确命题的序号为_______(把所有正确命题的序号都填上).

 

【答案】

①②

【解析】,所以其对称中心为,①正确.对于②,若,x=0是的解,(0,f(0)就是函数y=f(x)的对称中心.故②正确.由于三次函数两次求导之后,只有一个根.所以对称中心也只有一个.故③错.对于④,,所以其对称中心为,

由于,

,,故④错.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年山东猜题卷)对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数,定义:设是函数的导函数的导数,若有实数解,则称点为函数的“拐点”。现已知,请解答下列问题:

(1)求函数的“拐点”A的坐标;

(2)求证的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高三10月质量检测理科数学试卷(解析版) 题型:填空题

对于三次函数,定义是函数的导函数。若方程有实数解,则称点为函数的“拐点”。有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心。根据这一发现,对于函数,则 的值为__________.

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省台州市高二下学期期末考试理科数学试卷(解析版) 题型:填空题

对于三次函数,定义是函数的导函数。若方程有实数解,则称点为函数的“拐点”。有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心。根据这一发现,对于函数

的值为    

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三11月练习数学试卷 题型:解答题

对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称.

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

 

查看答案和解析>>

同步练习册答案